

HARDWARE/SOFTWARE DESIGN AND IMPLEMENTATION OF A

LASER SCANNING CONFOCAL MICROSCOPE CONTROLLER

USING OPEN DESIGN APPROACH

BARAN YALÇIN

KOC UNIVERSITY

SEPTEMBER 2015

Hardware/Software Design and Implementation of a Laser

Scanning Confocal Microscope Controller Using Open

Design Approach

by

Baran Yalçın

A Thesis Submitted to the

Graduate School of Sciences and Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Optoelectronics and Photonics Engineering

Koc University

September 2015

ii

Koc University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Baran Yalçın

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Date:

Alper Kiraz, Ph. D. (Advisor)

Halil Bayraktar, Ph. D.

Alexandr Jonas, Ph. D.

iii

In dedication to my mother

 for making me who I am,

and İpek for supporting

me all the way!

iv

ABSTRACT

Laser scanning confocal microscope (LSCM) is a powerful electro-optic instrument

in biological imaging and material science, compared to traditional wide-field microscopy

methods. This stems from the fact that confocal microscopy enables optical imaging with a

better spatial resolution. However, high cost and complexity of commercially available

confocal systems hinder their wider usage.

 In this thesis, a new LSCM hardware/software is studied and developed using an

open design approach. This device is made more convenient by adapting low cost design

techniques, widely adapted components and well supported open source software. For this

reason, a CDAQ (Control and Data Acquisition) unit is designed and implemented to

perform essential electrical input/output (I/O) operations. This unit consists of a 2-channel

16-bit ultralow glitch Digital to Analog Converter (DAC) for driving the galvanometer

scanning mirrors, and interference reduction circuitry for a 3-channel on-board 12-bit

Analog to Digital Converter (ADC) which is used for sampling photomultiplier tube and

motor position feedback signals. These I/O peripherals are controlled by an ARM Cortex-

M based microcontroller which runs a multithreaded firmware to accomplish given tasks.

Components of the CDAQ are all pluggable I/O interfaces and they are open to

modification for the desired application. Along with these operations, CDAQ provides

power supply and gain control units.

 CDAQ unit is controlled as a device from the user interface named “Konfokal”

which is developed using Python programming language along with PyQt framework.

“Konfokal” is an open source software which aims at increasing the productivity of

researchers by providing environment where LSCM image acquisition and modification

can be done under one single program.

v

Also, the opportunity to tailor or modify the source for the application is possible.

Capabilities of this complete working device are shown with acquired images of test

samples and it is offered as a more convenient and modern device for use of researchers.

 “Konfokal” program was also extended in order to incorporate a Digital

Micromirror Device (DMD) as a scanning unit in place of the galvanometer scanning

mirrors.

vi

vii

ÖZET

 Laser Taramalı Konfokal Mikroskobu (LTKM) biyolojik görüntüleme, malzeme

bilimlerinde geniş açılı mikroskobu metodlarının yanı sıra kullanılan güçlü bir elektro-

optik alettir. Konfokal mikroskobinin tercih edilme sebebi sağladığı daha iyi çözünürlükten

kaynaklanmaktadır. Ticari olarak halihazırda bulunan konfokal sistemler karmaşık ve

yüksek maliyetlidir. Ayrıca kullanım alanlarının genişletilmesi sınırlandırılmıştır.

 Bu tezde yeni bir LTKM donanımı/yazılımı üzerinde çalışılmış ve açık tasarım

ilkesi güdülerek geliştirilmiştir. Düşük maliyetli tasarım teknikleri, geniş kitleler tarafından

kullanılan malzemeler ve kullanıcılar tarafından desteklenen yazılımlar sayesinde aletin

kullanılabilirliği arttırılmıştır. Bu sebeple elektriksel girdi çıktı (I/O) işlemlerini

gerçekleştirecek bir kontrol ünitesi (CDAQ) geliştirilmiştir. Bu ünite galvanometrik

taramalı aynalarının sürmek için 2-kanallı 16-bit düşük gürültülü DAClerden, karışma

(interference) engelleyici devreden ve motor/PMT bilgisini örneklemek için 3-kanallı 12-

bit ADClerden oluşmaktadır. Bu girdi çıktı çevre aygıtları üzerinde çoklu kullanımlı bir

bellenim koşan ARM Cortex-M tabanlı bir mikrodenetleyici tarafından kontrol

edilmektedir. CDAQ’nun bileşenleri takılıp çıkartılabilir ve böylece istenilen uygulama

için uyarlanmaya müsaittir. Bunların yanı sıra CDAQ güç kaynağı ve kazanç kontrol

ünitelerine sahiptir.

 CDAQ ünitesi Python programlama dili ve PyQt kütüphanesi kullanılarak

geliştirilmiş bir kullanıcı arayüzü olan Konfokal programından kontrol edilebilmektedir.

Konfokal açık kaynak kodlu bir yazılımdır. Konfokal, araştırmacıların LTKM görüntü

aktarımını ve görüntü dönüşümlerini aynı yerde gerçekleştirmesine olanak sunarak

üretkenliklerini arttırmayı amaçlamaktadır. Programın ihtiyaç duyulan yerlerinde

değişiklikler yapılarak, diğer uygulamalara adapte edilebilir. Bu aletlerin yapabilecekleri,

viii

elde edilmiş olan görüntüleme sonuçlarıyla birlikte bu tezde belirtilmiş ve araştırmacılara

daha kullanışlı bir platform olarak önerilmiştir.

 Konfokal programı aynı zamanda Sayısal Mikroayna Aygıtı (DMD) ile birlikte

kullanılabilecek şekilde genişletilmiştir.

ix

ACKNOWLEDGEMENTS

 I thank Prof. Dr. Alper Kiraz for his assistance and guidance during my thesis. His

broad and deep expertise has always been very educational and instructive on me. Chance

of working with him and his group was a life changing experience.

 I also thank Adnan Kurt for his mentorship and help on the development and

implementation of the hardware/software. He was always very helpful and provided

assistance when needed. I have always admired his problem solving skills.

 I thank to Professors Alexandr Jonas and Halil Bayraktar for joining my thesis

committee.

 Selçuk Çakmak has always provided different and interesting insights about

hardware and software. I thank Mustafa Eryürek, İsmail Yorulmaz and Abdullah Muti,

Gökalp Rençber for their help on almost about anything, they are great mentors and

friends.

 Last but not least, I thank to TÜBİTAK for funding 113F172 “OptoSayısal

Konfokal Mikroskop Geliştirilmesi” project.

x

TABLE OF CONTENTS

List of Tables xii

List of Figures xiii

Nomenclature xvi

Chapter 1: Introduction 1

1.1 Fundamentals of Microscopy. .1

1.2 Fundamentals of Confocal Microscopy. 5

1.3 Current Methodologies in Confocal Microscopy 9

1.3.1 Laser Scanning Confocal Microscopy 9

1.4 Laser Scanning Confocal Microscope Setup. 13

Chapter 2: System Considerations 16

 2.1 Overview. 16

 2.2 Electro-optic Elements. 17

 2.2.1 PMT. . 17

 2.2.2 Galvanometer Scanning Mirrors. 20

 2.3 Prototypes of CDAQ. 22

xi

Chapter 3: Hardware Development of LSCM 33

 3.1 Requirements and Specifications. 33

 3.2 Building Blocks of CDAQ. 38

 3.2.1 MCU. 38

 3.2.2 DAQ Interface. 40

 Chapter 4: Software Development of LSCM 47

 4.1 Konfokal Program. 47

 4.2 Architecture of Konfokal Program. 48

 4.2.1 Front-end. . 49

 4.2.2 Back-end. . 54

 4.3 Source Code of Konfokal Program. 55

Chapter 5: Results and Discussion 56

5.1 Results Obtained with CDAQ and Konfokal56

 5.2 Large Area Scans. 56

 5.3 Small Area Scans 60

 5.4 Conclusion and Current Status . .. 64

Appendix 67

Bibliography 119

Vita 121

xii

LIST OF TABLES

Table 2.1: PMM02 specifications. 18

Table 2.2: MicroMax 673 series driver specifications. 21

Table 2.3: PWM DAC signal parameters.. 24

xiii

LIST OF FIGURES

Figure 1.1: A rudimentary microscope setup. . 2

Figure 1.2: Oil-immersion objective . 4

Figure 1.3: Wide field microscopy . 5

Figure 1.4: Effect of a pinhole . 6

Figure 1.5: Confocal microscopy . 6

Figure 1.6: Lateral and axial resolution . .7

Figure 1.7: LSCM setup . .9

Figure 1.8: Structure of PMT . .11

Figure 1.9: PMT gain circuit . 11

Figure 1.10: Scan head . 12

Figure 1.11: Optical components used in setup 13

Figure 2.1: PMM02 with accessories . 17

Figure 2.2: Spectral response of PMM02 (left), 6210H series optical scanner (right).19

Figure 2.3: Block diagram of the prototype 22

Figure 2.4: MCU1 firmware flowchart . 22

Figure 2.5: Different PWM duty cycles . . 23

Figure 2.6: Raster scan, Y (slow signal), X (fast signal). 24

Figure 2.7: Illustration of PWM DAC parameters 25

Figure 2.8: Signal conditioning circuit . . . 27

Figure 2.9: Bode plot of X channel filter . .28

Figure 2.10: Bode plot of Y channel filter. 28

Figure 2.11: Waveform generated with PWM DAC technique. 29

Figure 2.12: MCU1 firmware flowchart. 29

xiv

Figure 2.13: Python (left) and MATLAB (right) scripts’ flowcharts 30

Figure 2.14: Plot of PMT (top), motor position (bottom) readings where X is the slow

 signal and Y is the fast signal. . . 31

Figure 2.15: Obtained confocal image (left), original image (right). 32

Figure 3.1: CDAQ physical layout . 37

Figure 3.2: Functional block diagram of the system 37

Figure 3.3: Flowchart of CDAQ firmware . 38

Figure 3.4: Electrical schematic of DAQ interface 39

Figure 3.5: DAC unit schematic 41

Figure 3.6: CDAQ mainboard 42

Figure 3.7: Input protection circuit 43

Figure 3.8: Simulation of position signal buffer 43

Figure 3.9: Simulation of PMT signal buffer. . . 44

Figure 3.10: Enclosed CDAQ system . 44

Figure 3.11: Mainboard PCB of CDAQ (Box 2). 45

Figure 3.12: Input buffer of CDAQ (Box 2). . 45

Figure 3.13: Power supply and motor driver units of CDAQ (Box 1). 46

Figure 4.1: Architecture of the program 49

Figure 4.2: Main window of front-end 50

Figure 4.3: Konfokal menus 50

Figure 4.4: New Session window. . . . 51

Figure 4.5: Load/Save (As) window 52

Figure 4.6: New Scan wizard. 53

Figure 5.1: Screenshot of the acquired image 57

Figure 5.2: Comparison of acquired image. 57

Figure 5.3: Acquired image with protoype. 58

xv

Figure 5.4: Plot of position readings (Y-top, X-middle) and PMT readings (bottom) with

 CDAQ. 59

Figure 5.5: Plot of PMT readings (top) and position readings (bottom) with

 Prototype 61

Figure 5.6: 50/65536 small area scan. 62

Figure 5.7: 20/65536 small area scan (middle of a single line). 63

Figure 5.8: 20/65536 small area scan (end of a single line). 64

Figure 5.9: Stored pattern generation with Konfokal. 66

xvi

NOMENCLATURE

LSCM Laser scanning confocal microscopy

NA Numerical aperture

rxy Lateral resolution

feff Effective focal length

n Refractive index

PMT Photomultiplier tube

CCD Charge coupled device

CMOS Complementary metal oxide semiconductor

ADC Analog to digital converter

DAC Digital to analog converter

PWM Pulse width modulation

CDAQ Control and data acquisition unit

τPWM PWM period

fPWM PWM frequency

τ Time constant

MCU Microcontroller unit

MSPS Megasample per second

USB Universal serial bus

UART Universal asynchronous receiver/transmitter

Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

1.1 Fundamentals of Microscopy

 Human eye has limits. It is not capable of visualizing every object identically.

Limits of vision exist as a consequence of conditions that are extrinsic and intrinsic to the

human eye. Some of such extrinsic conditions are related to dimensions of the object,

object’s distance to the retina, color composition of the object, illumination from the object

and also some of such intrinsic ones are related to resolution ability of the eye, power

gathering capability and sensitivity of eye to light color [1]. Therefore, a correction is

necessary for having a better vision and this correction is carried by optical instruments.

 Microscopes are optical instruments that make small objects visible. Assuming an

accepted proximity (d = 25 cm) between the object and the eye, the term ‘small’ can be

defined by the angular resolution limit of the eye. This limit is 4 arcminutes, or in another

unit, 0.07 degrees [2]. Calculation of this limit corresponds to ~ 1.75 cm (25 cm * 0.07).

Beyond this limit, assuming other criteria are being satisfied, human eye is not capable of

performing a proper visualization. A cell is an example for objects which human eye is not

capable of visualizing.

Chapter 1: Introduction 2

 Microscope notion usually connotes the light microscope, for that has been the

oldest and the most common one. However, today’s microscopes come in different

varieties, named by the techniques and physical principles that are being employed for

imaging. Other than fluorescence and light microscopes, electron microscopes and

scanning probe microscopes are among the most significant ones. Due to the nature of this

thesis, only fluorescence and light microscopy will be investigated throughout this section.

 Fluorescence and light microscopes are used for producing magnified images of

small objects with the help of light source, lenses and optionally with other optical

elements such as mirrors, filters etc. Basically, two convex lenses and a light source are

enough for magnifying the desired object. Figure 1.1 depicts the configuration and ray

diagram of a simple microscope setup.

Figure 1.1 A rudimentary microscope setup [3]

 The compound microscope in Figure 1.1 consists of two lenses. These lenses are

enclosed in a tube. The one which is close to the object O is named as ‘objective’, and

similarly the one which is close to the eye is named as ‘eyepiece’.

Chapter 1: Introduction 3

Although not shown in Figure 1.1, a light source should be present to illuminate the object.

The light source is usually a bulb located on left of the object (O) in Figure 1.1. This

illumination configuration, which is widely adapted also for opaque samples, is known as

Köhler illumination. Important thing to note here is this: Köhler illumination can be used

for transparent and opaque samples where the light is condensed with the help of a

dedicated condenser lens and auxiliary lenses for creating optimal distribution of light on

the sample plane.

 Here, the main role of the objective is to form a real intermediate image of sample

(I) which is located outside of fo at s`o of Figure 1.1. Real image is usually located

somewhere between the eyepiece and fe (at d - s`o) of Figure 1.1 and it is observed by the

eyepiece. By looking at this real intermediate image – not the sample itself – eyepiece

forms an inverted virtual image and this is the image that is perceived by the eye itself.

 Similar to magnifiers, magnification of a microscope is expressed via (all lengths

given in cm), ܯ = ʹͷ�௘௙௙

where ܯ is the total angular magnification and �௘௙௙ is the effective focal length of the

system of lenses, which are separated by the distance �, as seen in Figure 1.1 [3]. Here, �௘௙௙ is given by ͳ�௘௙௙ = ͳ�௢ + ͳ�௘ − ��௢�௘
After further elaborations and applying Newton’s thin lens magnification formula, the

resulting master equation for this rudimentary microscope becomes ܯ = − (ʹͷ�௘) ((௢�ܮ

An important thing to note here is the ܮ .ܮ is standardized as 16 cm in many microscopes

[3].

Chapter 1: Introduction 4

However, this is true for older microscopes. Modern microscopes operate with infinite tube

distance. In most of the cases, magnification is determined by the focal lengths of objective

and the eyepiece.

 Another very important concept about the objective is the numerical aperture (NA).

The numerical aperture is defined as ܰ� = where n is the refractive index of the ,� ��ݏ �

medium and α is the entrance half-angle. Since the objective defines the entrance pupil of

the system, its ability to collect rays from different angles (NA) – as much as possible – is

very critical. It is critical, because this parameter is inversely proportional to lateral

resolution (by NA), whereas inversely proportional to axial resolution or depth of field (by

NA
2
) [3].

Figure 1.2 Oil-immersion objective [3]

 Thus, this makes NA a very important parameter when selecting an objective lens.

Increasing the NA is possible by using oil as shown in Figure 1.2. This type of objectives

are known as ‘oil-immersion objectives’.

 Considering these, objective becomes the most critical component in a microscope

for it is directly related with resolution and depth of field. However, without taking other

components and parameters into account, relying only on the quality of objective for better

results is an oversimplification.

Chapter 1: Introduction 5

Figure 1.3 Wide field microscopy [5]

Microscope should be taken as a whole with the fact that: any enhancements made in one

component may lead to performance decrease in overall system unless everything is

calculated as a whole. Therefore microscope designer’s approach should be to design

everything in a perfect harmony while considering system as a whole. Every parameter

(such as aberrations) must be calculated and considered from the initial to final step.

1.2 Fundamentals of Confocal Microscopy

 Basics of optical microscopy that were mentioned above also hold their validities in

confocal microscopy. Here, rather than illuminating the whole sample, sample is scanned

by a beam, one point at a time. Light source used in this configuration is usually a coherent

laser source. Since it was invented in 1957 by Marvin Minsky, it has evolved into four

different techniques that are commercially available on the market [4]. These are known as:

Laser Scanning Confocal Microscopes, Spinning Disk (or Nipkow Disk) Confocal

Microscopes, Dual Spinning Disk Confocal Microscopes and lastly, Programmable Array

Microscopes. In this section, only the Laser Scanning Confocal Microscopes and

Programmable Array Microscopes will be investigated, for others are beyond the scope of

this thesis.

From a simplistic point of view,

Figure 1.3 illustrates the fundamentals

of wide field microscopy. Whole

sample is uniformly illuminated with

an extended light source such as a

halogen lamp.

Chapter 1: Introduction 6

Figure 1.4 Effect of a pinhole [5]

Figure 1.5 Confocal microscopy [5]

After passing through the sample, rays travel to the lens and get imaged by the two-

dimensional detector (for example, a

CCD camera). Since extended light

source illuminates the whole sample,

beams from all sample points reach to

the detector and distort the quality of

the image. To overcome this issue, a

pinhole can be added to the system (see Figure 1.4). With the pinhole, undesired points

within the sample do not contribute to the image; therefore, a higher image quality is

obtained.

Point source and pinhole satisfy the condition for confocal microscopy. With a

point source, only the selected point is illuminated in the sample and interferences with

other points are blocked. In addition, with the help of pinhole, only light from the observed

point is detected by a point detector. This is illustrated in Figure 1.5. The illuminated point

is now optically conjugate to the pinhole, and since the word confocal is actually a

combination of ‘conjugate’ and ‘focal’, the condition for confocal imaging becomes truly

satisfied.

‘Confocal’ paradigm has

advantages over wide field

microscopy in terms of resolution

and contrast. These advantages are

due to point-by-point (or one at a

time) imaging approach of this

technique.

Chapter 1: Introduction 7

Figure 1.6 Lateral and axial resolution

Since only a single point is illuminated at a time, the interference by other points (in X, Y

and Z axes) is minimal. Consequently, the lateral resolution, axial resolution and thus the

contrast of the image increase significantly. This also makes confocal microscopy a 3D

technique by enabling a scan through the volume of interest.

Lateral and axial resolution concepts

are illustrated in Figure 1.6. These parameters

are defined with respect to the optical axis of

the microscope. Lateral resolution is the

minimum distance between two

distinguishable points that lie within the

surface of the specimen –a plane

perpendicular to optical axis- , and axial resolution is the minimum distance between two

distinguishable points that lie within the depth of the specimen.

For confocal microscopy lateral resolution is given by the following equation ݎ௫௬ = Ͳ.͸ͳ�√ʹܰ�

Here rxy is the lateral resolution, λ is the wavelength and NA is the numerical aperture of

the objective lens [6]. Similarly the scanning angle is given by the following equation

� = ± tan−1 �ʹ�௘௣

Where θ is the scanning angle, l is the scanning length and fep is the focal length of the

eyepiece [6].

By tilting and changing the angle of mirror, desired area is scanned. Laser Scanning

Confocal Microscopes and Programmable Array Microscopes both base on this principle,

the movement of mirrors. To scan in Z axis, the stage that holds the sample is

incrementally moved in Z direction for every new XY scan.

Chapter 1: Introduction 8

Since only a single point is being imaged at a time, whole specimen should be scanned with

the point source. Compared to wide field microscopy this results in longer acquisition time

and longer exposure time. The tradeoff for 3D imaging is area of view.

Detection and acquisition of the light information in confocal microscopy is

performed by various photodetectors, usually with Photo Multiplier Tube (PMT), Charge

Coupled Device (CCD) Camera, Complementary Metal Oxide Semiconductor (CMOS)

Camera, or photodiode [6]. While mirrors are performing a raster scan, light information

should be detected by a light sensor and transferred to the unit where image formation and

further processing is performed. This brings real time constraints into the definition of

problem and as one can easily guess, trouble is doubled for a real time video streaming

application. However with modern processors and peripherals such as Analog to Digital

Converters (ADC) and Universal Serial Bus (USB) this data can easily be converted and

transferred into a computer for further processing to be performed.

Confocal microscopy requires electrical hardware, firmware and software that runs

on a high performance machine such as a personal computer. From hardware perspective,

electronics modules for controlling mirrors and detecting the incoming light are needed.

This should also be supported with a microcontroller which runs the firmware that

performs scanning, recording and data transfers. Recorded data is transferred into a PC and

received by the master program which is controlled by the researcher. Since techniques

used for performing these operations are vast, only the Laser Scanning Confocal

Microscopes will be detailed in the next section.

Chapter 1: Introduction 9

Figure 1.7 LCSM setup [8]

1.3 Current Methodologies in Confocal Microscopy

1.3.1 Laser Scanning Confocal

Microscope

Laser Scanning Confocal Microscope

(LSCM) was born owing to breakthroughs

in laser technology. First adapters of this

technique are Thomas and Christoph

Cremer, where the specimen was scanned

with a laser beam in a point-by-point

approach [7]. A widely-adapted and known

LSCM setup is given in Figure 1.7. LSCM

is an electro-optic system and it contains

three building blocks. As depicted in the

Figure 1.7, these building blocks are:

- Optical system: Lenses, mirrors, filters,

beam splitters, laser

- Control and data acquisition unit: Galvanometer scanning mirrors, PMT, electronics,

microcontroller

- PC: Software for controlling the LSCM and forming images

Combined together, these subsystems form the integrated LSCM device. Elements of

the optical system establish the optical pathways between light source, specimen and

the sensor.

Chapter 1: Introduction 10

Though it is quite similar to the system adopted for conventional wide-field fluorescence

microscopy, additional elements such as scan lens (also known as f-Theta lens) and beam

splitter exist. Scan lens is an essential element for building LSCM, because it corrects the

spot size of the beam at different scan angles so that the spot size in the plane of the

specimen almost always stays constant. Dichroic beam splitter, which is another element

used in LSCM, splits the incoming laser beam into two, hence the beam travels to specimen

and into the PMT.

 Control and data acquisition unit (CDAQ) is a crucial element which makes the

LSCM possible. This unit is responsible for commanding galvanometer scanning mirrors

and collecting the light information from the PMT. Along with these extremely important

tasks, it also provides the necessary power and input/output lines of interest to other parts

of the LSCM such as the power rails of galvanometer scanning mirrors controller, PMT

gain voltage, microscope lamp and USB interface for connecting to the PC. CDAQ actually

serves as a central bridge between these delicate instruments and the image. Therefore to

grasp the vital functions of this unit one must have more knowledge about the PMT and

galvanometer scanning mirrors first.

 PMT is an instrument used for detecting light signal and converting it into electrical

signal. Its operating principles are based on two physical effects which are known as

photoelectric effect and secondary emission. PMT is composed of two stages and these two

physical effects play role in these stages. In the first stage the light signal is translated into

electrical signal, or in other sense, the information is translated from photon to electron. At

this stage photoelectric effect takes place. In the second stage based on the secondary

emission effect, this electrical signal (electrons) is amplified. These stages and the structure

of the PMT are detailed in Figure 1.8.

Chapter 1: Introduction 11

Figure 1.8 Structure of PMT [9]

 PMT is an extremely sensitive device and therefore its components reside inside a

sealed vacuum tube. First, the incoming light hits the photocathode, which actually is a

thin conducting layer. This triggers the photoelectric effect and causes release of electrons

from the other side. With the help of the focusing electrode, electron travels and hits to the

first dynode. Dynodes have certain voltage applied to them which accelerates the

electrons, thus increasing their kinetic energy. When the accelerated electrons hit the

surface of the next dynode, secondary emission effect takes place and results in more

electron release.

Every bounce on dynodes increases the electron count. After bouncing back and forth

inside the dynode chain, electrons finally reach their final destination: anode. More

dynodes mean more current or higher amplification. The amplification is actually a

controllable parameter for PMT devices. To illustrate better, Figure 1.9 is provided below.

Figure 1.9 PMT gain circuit [10]

Chapter 1: Introduction 12

Figure 1.10 Scan head [11]

 A negative voltage is applied to the photocathode and the last dynode is grounded

after its terminating resistor. This negative voltage applied to the photocathode is usually

called as “High Voltage Tube” or HV for short. Applied voltage is then divided into

voltage steps, throughout the dynodes. Therefore every dynode has a higher potential than

the previous dynode. Since bouncing of electrons between two dynodes lead to

multiplication of electrons, this multiplication coefficient is actually determined by the

potential applied to the photocathode. Adjusting HV increases or decreases the potential of

dynodes accordingly and this causes increase or decrease in the current amplification

process. PMT devices usually multiply on the order of thousands and actually they can

reach up to 100 million times multiplication. This of course is determined by the

parameters of the PMT device such as number of dynodes and applied HV.

Another essential element in LSCM is the

galvanometer scanning mirror. Galvanometer scanning mirror

is used for steering the beam. This mirror and its properties are

very critical for performing a successful scan and also for

obtaining a good quality image. Speed, stability, cost,

reliability, size, precision, quality and performance are some of

the criteria which determine the most suitable scanning mirror

for the application. To meet these physical specifications,

mirror is mounted on a DC motor which is controlled by a PD

controller. A scan head is shown in Figure 1.10. Scan head can

come with a built-in PD controller or an additional controller

may be provided or built for the need. These controllers aim to translate applied voltage

into tilt angle of the mirror. Combined with suitable waveform and resonant frequency,

scanning mirror controllers offer best beam steering solution for LSCM.

Chapter 1: Introduction 13

 PMT and galvanometer scanning mirrors form the essential instruments while

performing LSCM. Quality of these devices effect the overall quality of the system and

image. Along with these instruments other optical elements and devices are required for an

LSCM too. These devices are mentioned and described in the section where the optical

setup is detailed.

1.4 Laser Scanning Confocal Microscope Setup

 In this thesis an LSCM has been built. To build the microscope, optical and

electrical parts have been combined. Although the electronics and software are the main

focus for this thesis, optics will be investigated briefly. Figure 1.11 shows the setup’s view

from above.

Figure 1.11 Optical components used in setup

Chapter 1: Introduction 14

Optical components in Figure 1.11 are numbered and annotated briefly below:

1- Laser source: 532 nm green laser light source. Its power capability is 5 mW and the

 beam quality is sufficient.

2- Variable neutral density filter: Adjusts the intensity of the laser beam.

3- Intensity filter: Reduces the intensity of the beam.

4- Plano-convex lens: Beam passes through this lens. This lens has f = 200 mm to

 provide better point illumination.

5- Mirror: Beam is reflected to next lens.

6- Plano-convex lens: Lens with f = 50 mm.

7- Plano-convex lens: Lens with f = 100 mm. Combination of lenses 6 and 7 forms a

 telescope and increases beam diameter two times.

8- Mirror: Beam is reflected from this mirror.

9- Dichroic beam splitter: Excitation laser beam passes through this beam splitter and

 then reaches to galvanometer scanning mirrors. Detection light coming from the

 microscope is reflected from this beam splitter towards the PMT.

10- Diaphragm: Regulates the amount of light that passes through the galvanometer

 scanning mirrors.

11- Galvanometer scanning mirrors: Used for steering the excitation beam in X and Y

 axes. Fast motion mirror provides motion of beam in X axis and slow motion mirror

 provides motion of beam in Y axis.

12- Scan lens: Special Optics telecentric f-Theta laser scan lens increases image area as

 much as 100 times of a conventional microscope. It is optimized for confocal

 microscopy, therefore it focuses incoming laser beam to a spot on the microscope

 slide. Its back focal length is 70 mm.

13- Beam splitter: Laser beam passes through the beam splitter and reaches into the

 microscope.

Chapter 1: Introduction 15

14- Tube lens: Resides inside Nikon Inverted Eclipse Ti-U microscope. Its focal length

 is 200 mm and it is used because of the infinity corrected objective. Then, beam

 enters the objective which is an infinity corrected Nikon 40X objective with

 working distance of 2.1 mm and NA=0.55. Image is formed by putting the

 specimen at the focal plane of the objective.

15- Camera: Paraxial rays passing from the tube lens hit the beam splitter again and

 reach into the USB camera. This is useful for viewing the sample on PC.

16- PMT lens: Light coming from galvanometer scanning mirrors goes through this lens

 before reaching to PMT. Rays are focused to be detected by the PMT.

17- PMT: Detects the light and translates light signal into electrical signal.

Chapter 2: System Considerations 16

Chapter 2

SYSTEM CONSIDERATIONS

2.1 Overview

LSCM is an electro-optic instrument and it needs certain hardware and software in

order to function. Developing and maintaining an LSCM system requires one to meet the

criteria listed below. Although these are vaguely defined for now, they will become clear at

the end of this section. To summarize:

- Delivering necessary power and signal to components

- Controlling galvanometer mirrors

- Performing PMT readout

- Automating for everyday use

are the major requirements for an LSCM system which is aimed to be used by a researcher

for everyday purposes.

 In this section work completed for meeting these requirements is described. To

understand these requirements, components and their specifications are given. Also,

prototypes developed for these purposes are detailed. At the end of this section, the need

for certain system parameters will become very easy to understand.

Chapter 2: System Considerations 17

Hence, system requirements and specifications, which are derived from these prototypes,

will become solid and valid. Therefore with these final results, we will be ready to make

the final design.

2.2 Electro-optic Elements

 To construct the LSCM setup, two major elements are needed: PMT and

galvanometer scanning mirrors. Electrical hardware should form a bridge between these

two pieces and work as a station. In order to produce such a system, details and working

conditions of the PMT and galvanometer scanning mirrors are needed. Therefore their

specifications must be considered during the design process.

2.2.1 PMT

 PMT used in the setup is

“PMM02 Amplified Photomultiplier”

and it is manufactured by ThorLabs

[12]. Figure 2.1 shows this product

with its interconnection cables and

power supply. General and electrical

specifications of this PMT are

detailed in Table 2.1.

Figure 2.1 PMM02 with accessories

Chapter 2: System Considerations 18

Photocathode Type Multialkali (S20)

Photocathode Geometry Head-On

Dynode Chain Orientation Circular

Photocathode Active Diameter 22 mm

Wavelength Range 280 – 850 nm

Gain (Max) 3.1 x 10
6

Peak Responsivity (Max) 67 mA/W

Quantum Efficiency at Peak (Typ) 21%

Transimpedance Gain Hi-Z: 1 x 10
6
 V/A

50 Ω: 5 x 105
 V/A

Dark Current (@ 20 °C) 0.5 – 5 nA

Dark Count Rate (@ 20 °C) 3000 s
-1

Bandwidth (6dB) 0-20 kHz

Amplifier Noise (Typ) 2 mV RMS

Amplifier Offset (Typ) 1 mV

Output Rise and Fall Times 15 µs

Output Impedance 50 Ω

Output Signal 0-10 V (unterminated)

0-5 V (term. into 50 Ω)

Power Input +12 V (12 to 15): 40 mA

-12 V (-12 to -15): 10 mA

Anode Current (Max) 100 µA

Tube Voltage 0 to -1800 V

Tube Voltage Control 0 to 1.8 V

HV Control Connector 2.5 mm Mono Jack

Chapter 2: System Considerations 19

HV Control Sensitivity -1000 V/V

Warm Up Time <10 s

Output Connector SMA

Table 2.1 PMM02 Specifications

Design of the CDAQ unit must obey given PMT specifications. These are:

- Output signal should be carried by a 50 Ω coaxial cable so that the impedance is

matched.

- Output signal varies between 0 – 10 V. Because it is unterminated to ground and only

carried via cable.

- For tube voltage control (gain), an adjustable 0 – 1.25 V signal should be provided.

- Since PMT comes with its own power supply, another power supply unit is not needed.

- Figure 2.2 shows the spectral response with respect to wavelength. PMM02 has a good

sensitivity for 532 nm wavelength. Therefore, a monochromatic 532 nm green laser

was chosen as the laser source for the LSCM setup.

Figure 2.2 Spectral response of PMM02 (left), 6210H series optical scanner (right)

Chapter 2: System Considerations 20

2.2.2 Galvanometer Scanning Mirrors

 Galvanometer Scanning Mirrors used in this setup belong to 6210H Series of

Cambridge Technology. A single scanner is shown in Figure 2.2. These scanners are used

in applications where high-speed and accuracy is needed. Normally, electrical and

mechanical properties of these mirrors would be very important and critical parameters.

However, in this setup, these scanning mirrors are paired with MicroMax 673 Series Dual

Axis Driver. This driver automatically handles the control of the mirrors and handles all

scenarios for the end user. Table 2.2 gives the electrical specifications of this driver board.

Parameter Conditions Input Configuration Units

Command Input Impedance Differential 200 Kohm

Position Output Impedance Typ 2 Kohm

Analog Input Range Max ± 10 Volts

Position Offset

Trimpot Range

Typ ± 0.5 Volt

Position Output Scale Factor Std 0.500 Volts/°

mech.

Fault Outputs Typ 12V CMOS logic

through 4.75 kohm

-

Temperature Stability 0-50°C Ambient

Temp

20 ppm/°C

Absolute Maximum

Supply Voltage

± 18 to ± 30 Range 30

VDC ± 15 to ± 18 Range 30

Minimum Operating Voltage ± 18 to ± 30 Range 18 VDC

± 15 to ± 18 Range 15

Chapter 2: System Considerations 21

Output RMS Current Typ 5 A

Output Peak Current Typ 11.5 A

Output Peak Current Guaranteed 7 A

Supply Current Without Scanner ± 200 mA

Short Circuit Protection (Fuse) Typ Scanner RMS x1.25 A

Over-position Protection Typ Scanner Field size +

1°

Deg

Under-voltage Protection ± 18 to ± 30 Range

± 15 to ± 18 Range

17

12.5

V

Over-Temperature/Over current

Protection

Scanner RMS 1-3 Sec

Ambient Temperature Range Max limits 0-50 °C

Table 2.2 MicroMax 673 Series Driver Specifications

Since CDAQ provides the necessary control signals for the driver, these specifications play

a key role while designing the CDAQ. MicroMax 673 Series does not come with a power

supply, therefore, it becomes CDAQ’s responsibility to power this driver. To power the

driver ± 15 V and 11.5 A are needed. To drive the mirrors, ± 10 V control signals are

needed for X and Y input channels. These input signals, when multiplied with position

output scale factor, can tilt mirrors up to ± 5 degrees. Applied control signals and other

case dependent parameters were determined by testing the mirrors in imaging the surface of

the sample. In the next section, these parameters will be determined while creating the first

prototype.

Chapter 2: System Considerations 22

2.3 Prototypes of CDAQ

 To understand requirements and specifications of the final system, prototyping is

performed. It is important to note that prototyping is a very important step in system-wide

designs because it forewarns the designer about ill-considered system parameters and leads

to a more solid design or end product. Therefore a prototype is designed to meet the

requirements that are mentioned in the

previous section. Main objective of the

CDAQ is to control the mirrors and

send PMT readings to PC for further

processing. To meet with these

objectives block diagram shown in

Figure 2.3 is considered.

According to this block

diagram, design employs two microcontrollers.

MCU 1 generates the scan waveform by passing its

output to a signal conditioning circuit. This circuit

takes the signal and turns it into a valid waveform to

perform a periodic scan. In this prototype, sawtooth

waveforms for driving the X and Y channels are

generated by employing the PWM (Pulse Width

Modulation) technique. Later these signals are fed

into galvanometer driver. MCU 2 records PMT

readings and galvanometer scanning mirror position

Figure 2.3 Block diagram of the prototype

Figure 2.4 MCU 1 firmware flowchart

Chapter 2: System Considerations 23

Figure 2.5 Different PWM duty cycles

signals. These data are later transferred to PC in order to form the confocal image.

MCU 1 used in this design is a Texas Instruments Tiva C series microcontroller

TM4C123G. The flowchart of the firmware that runs in this microcontroller is available in

Figure 2.4. Firmware is also available in Appendix.

To generate analog waveforms for driving X and Y channels, PWM analog

conversion technique is applied. This technique is chosen because of its simplicity and

efficient power consumption. PWM signals are determined by two parameters, one of them

is the period and the other one of them is the duty cycle. Duty cycle of a PWM signal is

given by the following relation: ݐݑܦ� ����� = �௢௡� x ͳͲͲ

Where � is the period of signal and �௢௡ is the time where signal is logic high. Duty cycle

can be between 0 – 100. Sample PWM signals with various duty cycles are shown in

Figure 2.5. 50%, 75%, 25% duty cycles mean that signal is logic high for half of the period,

0.75 times of the period and quarter of the period respectively.

By varying and integrating the PWM

signals, desired waveform is obtained. If variations

of the duty cycle are constant, then ramp or

sawtooth waveform is obtained. PWM DAC process

is detailed in Nisarga's application report [13].

While scanning the sample with galvanometer

scanning mirrors, two waveforms are generated.

One of them should scan the sample slow (in Y axis) and one of them should scan the

sample fast (in X axis). This is known as raster scan and it is illustrated in Figure 2.6.

Chapter 2: System Considerations 24

Figure 2.6 Raster scan, Y (slow signal), X (fast signal)

In his application report, Nisarga addresses DAC technique via PWM [13]. PWM DAC

technique is chosen because it is simple to build, low cost and energy efficient. It basically

maps phase modulations to voltage modulations. This is performed by passing the signal

through a low pass filter. Similar technique is followed and frequencies of the signals are

calculated. These parameters are shown in Table 2.3. As it is depicted in this table, ratio of

X and Y scanning frequencies is approximately 1:100.

Table 2.3 PWM DAC signal parameters

Chapter 2: System Considerations 25

Figure 2.7 explains, resolution, repeat, τPWM and period of signal parameters of Table 2.3

below. Resolution is the step size of signal, which starts from Vmin and increases to Vmax.

Repeat is the repeat count of signal that is waited before incrementing to next voltage level.

In this context, resolution and repeat parameters are unitless.

Figure 2.7 Illustration of PWM DAC parameters

Thus, these parameters cannot be selected independently from each other and must satisfy a

condition. This condition is generated for this application with the help of Figure 2.7. X

signal should wait for a single scan of Y. This time period is given by ܺ௥�௣��௧ ∗ ܺ���� .

Channel Resolution Repeat τPWM [ms] fPWM
[kHz]

fsawtooth

X 100 100 1 1 0.1 Hz

Y 100 10 0.1 10 10 Hz

Chapter 2: System Considerations 26

This time period should match to the period of Y signal, which is given by ௥ܻ�௣��௧ ∗ �ܻ��� ∗ ௥ܻ�௦௢�௨௧�௢௡. Overall condition is captured by the following relation:

 ܺ௥�௣��௧ ∗ ܺ���� = ௥ܻ�௣��௧ ∗ �ܻ��� ∗ ௥ܻ�௦௢�௨௧�௢௡

To generate the desired sawtooth waveforms, PWM signal is passed through a

signal conditioning circuit. This circuit must integrate the given signal and also adjust the

level of the signal. Therefore, a low pass filter with a level shifter and amplifier is

constructed. Signal conditioner circuit is available in Figure 2.8.

It contains second order low pass filters which are used for eliminating the fPWM and

passing the real frequency of the signal fsawtooth. As Nisarga mentions, time constants of the

first and the second stage of these filters must be equal to each other for peak performance.

Time constant is calculated via: � = ܥ�

For 0.1 Hz signal R and C values are 2.2 kΩ with 100 µF and 1 MΩ with 220 nF. For 10

Hz signal R and C values are 3.3 kΩ with 680 nF and 1 MΩ with 2 nF. Transfer

characteristics of these filters are available in Figure 2.9 and Figure 2.10. These plots

determine how these filters respond, and how well-suited they are for the desired

application. Bode plots of these filters prove that these filters block the PWM frequency

and pass the sawtooth waveform frequency.

Using the circuit presented in Figure 2.8, desired sawtooth waveforms were

obtained and they are ready to control galvanometer scanning mirrors. 10 Hz sawtooth

waveform was measured and captured in the oscilloscope screen. Waveform image proves

the functionality of the signal conditioner circuit and it is available in Figure 2.11.

Chapter 2: System Considerations 27

Figure 2.8 Signal conditioning circuit

Chapter 2: System Considerations 28

Figure 2.9 Bode plot of X channel filter

Figure 2.10 Bode plot of Y channel filter

Chapter 2: System Considerations 29

Figure 2.12 MCU 2 firmware flowchart

Figure 2.11 Waveform generated with PWM DAC technique

 MCU 2 used in this

design is Texas Instruments

Stellaris series

microcontroller LM4F120.

MCU 1 and MCU 2 are

microcontrollers that have

ARM Cortex-M family

processors and they are

widely adapted in data

acquisition and control

applications. The firmware

written for this microcontroller has the

flowchart that is available in Figure

2.12. Firmware is also available in

Appendix. MCU 2 samples the PMT and

motor position readings, then transfers

them to PC. For this task, differential

sampling technique is used at 1 MSPS

(megasample/s). Recorded data are

transferred to PC via serial UART

(Universal Asynchronous

Receiver/Transmitter) protocol.

 All procedures are controlled by

the Python script which is running on the

PC. When this program begins, mirrors

Chapter 2: System Considerations 30

Figure 2.13 Python (left) and

MATLAB (right) scripts' flowcharts

start to move and sampling is performed. After whole

scan completes, a MATLAB routine forms the image.

To perform these tasks, pyserial and matplotlib

libraries are used besides Python standard library and

MATLAB. Flowchart of these Python and MATLAB

scripts are available in Figure 2.13. These scripts are

also available in Appendix.

Forming the image requires PMT and galvanometer

scanner position data. 12-bit ADC of Stellaris

microcontroller, samples these data and transfers them

to PC. Figure 2.14 shows the captured waveforms of

PMT and galvanometer scanner position. As expected,

slow and fast saw tooth waveforms are recorded. X

axis motor is driven by slow signal, and Y axis motor

is driven by fast signal. Y signal waits for one scan of

X and then increases its value. Interpolation of these

two data according to MATLAB routine of Figure 2.13 displays the final image shown in

Figure 2.15. This image consists of 100 x 100 pixels.

Since this is a prototype, quantitative analysis of the image is postponed for the final design

and only qualitative analysis is performed. Sample used for this scan is a transparent ruler

array with 10 µm distance between each marking. Obtained LSCM image and wide-field

image of the ruler are shown in Figure 2.15 left and right, respectively. Shortcomings of

this image stem from optical alignment, electrical noise and non-precision of filtering.

Filters cause different phase margins and therefore break the symmetry.

Chapter 2: System Considerations 31

However for a prototype this is an acceptable image and it is sufficient enough for

obtaining system specifications which are discussed in the next section, where final design

is performed.

Figure 2.14 Plot of PMT (top), motor position (bottom) readings where X is the slow signal and Y is the

fast signal

Chapter 2: System Considerations 32

Figure 2.15 Obtained confocal image (left), original image (right)

Chapter 3: Hardware Development of LSCM 33

Chapter 3

HARDWARE DEVELOPMENT OF LSCM

3.1 Requirements and Specifications

 A prototype of LSCM has been developed and characterized in the previous

chapter. The aim was to find a working solution and necessary specifications for

developing the best final custom design. This final implementation aims to compensate all

the shortcomings of the prototype and it also aims to deliver a turn-key solution for

everyday LSCM user. To implement this final custom design, following requirements and

specifications have been obtained from the prototype:

a) Scanning system

- Configurable scan area [length (l) x height (h)]

- Configurable scan resolution [m (x axis) x n (y axis)]

- Configurable scan period [tx and ty]

- Configurable scan type [sawtooth, triangular]

b) Data acquisition system

- UART-less, USB based data acquisition

- Differential sampling for X, Y and PMT inputs

Chapter 3: Hardware Development of LSCM 34

c) MCU

- Single Tiva C MCU based design

- Handshake must be performed before start

- DAC based design for driving galvanometer scanning mirrors

- ADC based design for reading motor position and PMT

d) Interfacing circuit

- Power management circuitry for DAC

- Buffer for DAC and ADC channels

- PMT gain voltage knob

- Box based design, switches/indicator lights

e) Physical dimensions

- Proper boxing and cabling [2 boxes with connections and cabling]

- Power supply and galvanometer scanner driver box

- CDAQ box

These requirements aim to provide a user friendly, stable, sustainable, high quality

control and data acquisition (CDAQ) system. Highly configurable scan options, DAC and

USB based high speed scanning and data acquisition ability, precision techniques for

reducing crosstalk, interference, and noise, errorless bridging between hardware and PC are

some of the goals of this design. Overall custom hardware is enclosed for fitting the

concept in a systems approach. To meet these requirements, following specifications were

derived from the working prototype.

Chapter 3: Hardware Development of LSCM 35

a) Scanning system

Parameter Condition Value Unit

Scan area Max X: 205

Y: 165

µm

Scan voltage range Max X: -1.46 to + 1.46

Y: -1.06 to +0.88

V

Scan resolution Min 0.1 µm

Scan period Std 0 – 100% of DAC speed s

Scan type Std Triangle, sawtooth -

b) Data acquisition system

Parameter Condition Value Unit

X/Y output range Max X: -1.08 to 1.08

Y: -0.77 to 0.64

V

PMT output range Std 0 – 10 V

PMT control voltage Std 0 - 1.25 V

Data transfer mode Std 12 MBps

c) MCU

Parameter Condition Description

MCU Std Tiva C Series: EK-TM4C123GXL

ADC Std 12-bit, 1MSPS, differential, built-in

DAC Std 16-bit, Texas Instruments 8551

Chapter 3: Hardware Development of LSCM 36

d) Interfacing circuit

Parameter Condition Value Unit

DAC buffer Std Maps X: -1.46 to +1.46

Maps Y: -1.06 to +0.88

V

PMT control voltage Std Regulator + potentiometer

maps to 0 – 1.25

V

PMT input Std 0 - 10 V

ADC buffer Std Capacitive coupling circuit -

e) Physical dimensions

Parameter Limits Description

Box 1 L: 28.5 cm

W: 18 cm

H: 15 cm

- 2 x 15 V 150 W power supply

- Galvanometer scanner driver

- Galvanometer scanner

Box 2

L: 19 cm

W: 20.5 cm

H: 5.5 cm

- MCU

- ±15 V, ground connections

- PMT control unit

- Motor control unit

- Motor reading unit

 To illustrate physical properties of these systems, Figure 3.1 is provided. As this

figure suggests, Box 1 is responsible of powering the whole system and enclosing the

provided galvanometer scanner driver. Box 2 contains the controllers for driving mirrors

(DAC), MCU (with built-in ADC) and PMT gain circuitry. It also connects to PC in order

to perform in accordance with the user interface software. This physical layout is also

available as a functional block diagram in Figure 3.2, where interconnections between

building blocks are more visible.

Chapter 3: Hardware Development of LSCM 37

Figure 3.1 CDAQ physical layout

Figure 3.2 Functional block diagram of the system

Chapter 3: Hardware Development of LSCM 38

Figure 3.3 Flowchart of CDAQ firmware

“Power Supply & Driver Unit” was detailed in previous chapters and “Konfokal” software

will be detailed in the next chapter. Since this chapter is on hardware development, only the

CDAQ will be detailed here.

3.2 Building Blocks of CDAQ

3.2.1 MCU

MCU used in this design is a Texas

Instruments Tiva C Series EK-TM4C123GXL

evaluation board. This board is very suitable

for control and data acquisition applications

because it makes high speed data transfer

possible with its built in 12-bit 1MSPS ADC,

SPI and USB peripherals. Moreover it comes

with the well-known and supported ARM

Cortex-M4 processor. Normally, collecting all

these features together would not be efficient

in terms of cost and time. Therefore this

approach is chosen in order to design a reliable

and efficient solution.

This MCU takes responsibility of every crucial hardware level task. It samples the PMT

and X/Y galvanometer scanner position channels, drives mirrors via SPI protocol, and

sends recorded scan data to PC.

Chapter 3: Hardware Development of LSCM 39

Actually, this MCU grants the “device” properties to whole system, so that user interface

(Konfokal) can perform given tasks. To meet these goals, an interrupt-driven firmware is

written for this MCU. The flowchart of this firmware is available in Figure 3.3, also the

code for this firmware is available in Appendix.

Figure 3.4 Electrical schematic of DAQ interface

Chapter 3: Hardware Development of LSCM 40

3.2.2 DAQ Interface

 DAQ interface is a highly modularized interfacing circuit that is designed for the

CDAQ. It is composed of main board, MCU slot and DAC slot. Components of the main

board are through-hole type, however DAC slot components are SMD (surface mount

device) type. This hybrid approach supports future updates of MCU and DAC units, so that

faster and better DACs can be used with the compatible main board of DAQ interface.

Also, glitches that can occur because of failure can be solved by replacing old unit with the

new, therefore new cost of designing from the beginning is avoided. Figure 3.4 describes

the electrical schematic of DAQ in the best and simplest way possible.

 Pluggable DAC unit (with its DAC8551 ICs) delivers better performances in

resolution and speed. These DACs map 16-bit to 0 – 5.5 V range and they provide µV level

resolution. Also the settling time of DACs are given as 10 µs. This results in a faster scan

time. DAC circuit schematic is available in Figure 3.5. Schematic of the mainboard that

hosts pluggable DAC unit and MCU unit is available in Figure 3.6. It acts as a power

management board with extended ADC buffer unit. Input protection circuit of input

peripherals are available in Figure 3.7. The simulations of these units with filters are

available in Figure 3.8 and Figure 3.9. Overall view of the completed units are available in

Figure 3.10.

Chapter 3: Hardware Development of LSCM 41

Figure 3.5 DAC unit schematic

Chapter 3: Hardware Development of LSCM 42

Figure 3.6 CDAQ mainboard

Chapter 3: Hardware Development of LSCM 43

Figure 3.7 Input protection circuit

Figure 3.8 Simulation of position signal buffer

Chapter 3: Hardware Development of LSCM 44

Figure 3.9 Simulation of PMT signal buffer

Figure 3.10 Enclosed CDAQ system

Chapter 3: Hardware Development of LSCM 45

Figure 3.11 Mainboard PCB of CDAQ (Box 2)

Figure 3.12 Input buffer of CDAQ (Box 2)

Chapter 3: Hardware Development of LSCM 46

Figure 3.13 Power supply and motor driver units of CDAQ (Box 1)

Chapter 4: Software Development of LSCM 47

Chapter 4

SOFTWARE DEVELOPMENT OF LSCM

4.1 “Konfokal” Program

 In previous chapter, capabilities of the LSCM hardware have been documented. To

have better control over this hardware, a PC application is offered. This software is known

as “Konfokal” and its duties are:

- Processing and transferring given scan commands

- Processing received data to form scan output

- Forming image and scan info

- Storing, loading and performing user related actions

In this context, Konfokal, which is a mixture of an LSCM application software and an

image editing software, aims to solve all problems with a single application.

 Konfokal is written in Python programming language for version 2.7. Its user

interface is Qt Framework port for Python, which is known as PyQt 4. Besides these,

Konfokal program depends on following external Python modules:

- matplotlib

- NumPy

- SciPy

- PIL

Chapter 4: Software Development of LSCM 48

- PyUSB

- PySerial

The program can run under any Python supported platform, however due to driver issues of

available hardware, program is written for and tested under Microsoft Windows 7 operating

system.

4.2 Architecture of Konfokal Program

 Konfokal program is composed of different modules that control different parts of

the program. It is composed of a front-end and a back-end. Front-end handles the user

interface related components such as layouts, widgets, icons and text. This is grouped

under “ui” (user interface) module. Back-end handles device features (dev), utilities (utils)

for interfacing with other services and core (core) modules where the inner workings of the

program exist. These are hierarchically available in Figure 4.1. Duties of these modules are

detailed for a clearer understanding.

Chapter 4: Software Development of LSCM 49

Figure 4.1 Architecture of the program

4.2.1 Front-end

- ui: This module is responsible of graphical user interface (GUI) tasks. Windows,

widgets and layouts are drawn to screen with the help of this module. It also sends

signals to back-end and displays signals that come from the back-end. Figure 4.2 is

the screenshot of the main window that belongs to front-end.

Chapter 4: Software Development of LSCM 50

Figure 4.2 Main window of front-end

 The screenshot of the menu bar of this front-end is available in Figure 4.3. These

 menus with their elements are detailed here.

Figure 4.3 Konfokal menus

 File menu has following elements:

- New Session: Initializes a new session. Konfokal program is based on session and

scan notions. Sessions are composed of scans, therefore by creating a new session

one can add scans under that session. Figure 4.4 shows the screenshot of New

Session window.

Chapter 4: Software Development of LSCM 51

In a new session one must include the user name, select the device type and also

include notes which can become useful while analyzing the data and image.

Figure 4.4 New Session window

- Load/Save (As) Session: Konfokal program saves data in its own file type. This

feature loads/saves sessions with scans and data. Loading/saving gives other

researchers an opportunity to share files between computers. Figure 4.5 shows the

Load/Save (As) window of the program.

- Export: This feature exports the scan image, data and plot. It is useful for

extracting the raw data.

- Settings: Adjusts settings of Konfokal program.

- Quit: Exits from program.

Chapter 4: Software Development of LSCM 52

Figure 4.5 Load/Save (As) window

 Edit menu has following elements:

- Undo: Recovers action.

- Redo: Repeats action.

- Manipulate: This element is used for manipulating the image and data. Its

manipulation operations are based on PIL (Python Imaging Library) operations.

Manipulate element provides basic image processing operations such as filtering.

 Scan menu has following elements:

- Quick Scan: This element repeats the last performed scan. It saves the user from

entering every detail again.

- New Scan: Performs a new scan for the given parameters. These scans are added

under the selected session. When user selects new scan, wizard in Figure 4.6 pops

up.

Chapter 4: Software Development of LSCM 53

Figure 4.6 New Scan wizard

Chapter 4: Software Development of LSCM 54

This wizard is composed of two windows. One of them is “General Settings” where

title, notes, date/time and notifications are made available for the user. Other one is

the “Scan Settings” window where scan range can be selected in micrometers range.

Range and resolution information are provided in the last section. Later, scanning

waveform is set and if it is a saw tooth wave, then fall rate of the signal is also set.

DAC speed is another important parameter that effects the scan time. This can be

adjusted between 0 – 100% of DAC’s maximum speed value which is available in

the datasheet of the DAC. Once these parameters are selected and set, Konfokal

sends start signal to CDAQ.

 Help menu has following elements:

- About Konfokal: Contains information about the program.

- Help: Help contents for the program.

4.2.2 Back-end

- core: Encapsulates essential data types such as “Session”, “Scan”, “ScanData”,

“ScanImage”. Contains essential methods and functions for storing, loading and

manipulating data. This module has the critical components of Konfokal program.

- dev: Contains device types. Along with CDAQ, additional devices can be added

under this module. These devices can be used by wrappers that mimic the generic

confocal device.

- utils: This module has the utility functions such as Windows services or other

operating system related services. New utility functions can be added under this

module for later uses.

Chapter 4: Software Development of LSCM 55

4.3 Source Code of Konfokal Program

 Konfokal is an open source software under GNU General Public License (GPLv2).

The source code is made available in Appendix. Users can modify, change or redistribute

the source code as long as they comply with the GPLv2. Below is the license notification:

Konfokal: LSCM Software

Copyright (C) 2015 Baran Yalcin

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2

of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-

1301, USA.

Chapter 5: Results and Discussion 56

Chapter 5

RESULTS AND DISCUSSION

5.1 Results obtained with CDAQ and Konfokal

 In Chapter 2 a prototype of LSCM was developed and characterized. This prototype

was built to control the galvanometer scanning mirrors and to collect PMT signal and

galvanometer scanning mirror position feedback readings. This prototype operated

successfully with few drawbacks in hardware and software domain. Therefore, a better and

final version of this device was developed. The hardware developed for this purpose is

called CDAQ (described in Chapter 3) and the software developed is called Konfokal

(described in Chapter 4). Results obtained with this device are much better than the

developed prototype. In this section these results are provided and annotated.

5.2 Large Area Scans

 Figure 5.1 shows one of the results obtained with the latest version of Konfokal

program and CDAQ hardware. It is the screenshot of the obtained image from a real scan.

Compared with the original test image, this image is much clearer and detailed. The

acquired image and its comparison to the conventional wide-field image of the same

sample are available in Figure 5.2.

Chapter 5: Results and Discussion 57

Figure 5.1 Screenshot of the acquired image

Figure 5.2 Comparison of acquired image

Chapter 5: Results and Discussion 58

Figure 5.3 shows the image acquired with the prototype. Clearly, new hardware and

software have accomplished better and obtained much more successful result. The lines in

Figure 5.3 are more noisy, unorganized and asymmetrical, whereas the lines in Figure 5.2

are more solid, perpendicular and symmetrical. The difference between Figure 5.2 and 5.3,

or superiority of Figure 5.2 with respect to Figure 5.3 can also be seen from the plot of scan

data.

Figure 5.3 Acquired image with protoype

Figure 5.4 and Figure 5.5 show the plot of scan data which are acquired with CDAQ and

prototype respectively. An important thing to note here is the distance between lines of

Figure 5.3 is 10 µm. Figure 5.4 shows the plot of the scan data, where the top plot belongs

to Y channel motor readings, middle plot belongs to X channel motor readings and bottom

plot belongs to PMT readings. The same normalization method of prototype is applied

while plotting these data. This normalization method shifts the minimum of the signal to

zero level and maps signal values to given pixel size. When compared to Figure 5.5, data in

Figure 5.4 is much stable and dense from a qualitative perspective.

Chapter 5: Results and Discussion 59

Because with CDAQ and Konfokal, image acquisition with higher resolution is made

possible with the changes introduced in hardware and software domains with the help of

DACs, USB protocol and multithreaded firmware.

 Minimum theoretical scanning step size, for X channel with the mapped maximum

scan range is given by: ܺ௦௧�௣ = ʹͲͷ µ݉ʹ16 = ʹͲͷ µ݉͸ͷͷ͵͸ = ͵.ͳ͵ ݊݉

Figure 5.4 Plot of position readings (Y-top, X-middle) and PMT readings (bottom) with CDAQ

For Y channel, minimum theoretical scanning step size is given by:

௦ܻ௧�௣ = ͳ͸ͷ µ݉ʹ16 = ͳ͸ͷ µ݉͸ͷͷ͵͸ = ʹ.ͷʹ ݊݉

For the galvanometer scanning mirrors, tilt angle for X and Y axes can be found by

multiplying voltage range with position output scale factor: ܺ�௡�௟� = Ͳ.ͷ ∗ (+ͳ.Ͷ͸ − ሺ−ͳ.Ͷ͸ሻ) = +ͳ.Ͷ͸ °

Chapter 5: Results and Discussion 60

�ܻ௡�௟� = Ͳ.ͷ ∗ (+Ͳ.ͺͺ − ሺ−ͳ.Ͳ͸ሻ) = +Ͳ.ͻ͹ °

These can be important parameters for optical evaluation of the system.

 Another important innovation of CDAQ and Konfokal combination is reduction of

channel noise (crosstalk). As one can observe by looking at Figure 5.5’s position plot,

changes in channel X cause fluctuations in channel Y or vice versa. This occurs because of

crosstalk event and it is eliminated with the buffering technique developed for CDAQ. The

crosstalk occurs due to parasitic capacitance between two cables and it is removed by

introducing shunt capacitors to these input buffers. Another method used for enhancing the

image quality finds its use in small area scans. This method does not use motor position

readings for forming the image. It uses input position data (rather than feedback data),

which holds true for small area scans. This improves the image quality as presented in the

next section.

5.3 Small Area Scans

 Generally, small areas are of interest in confocal imaging. Therefore, performance

of CDAQ and Konfokal have been tested with small area scans. The results suggest that the

performance is actually good enough for practical purposes. Acquired images of scans are

presented and discussed in this section. In the last section, minimum theoretical scanning

step size that can be reached was calculated. Here, step sizes of 50 and 20 out of 65536

(65536 = 2
16

) are the scans performed.

Since these are very little compared to full range, a smaller area has been targeted. Figure

5.6 shows the scan where 50/65536 is set for step size.

Chapter 5: Results and Discussion 61

Figure 5.5 Plot of PMT readings (top) and position readings (bottom) with prototype

Chapter 5: Results and Discussion 62

Figure 5.6 50/65536 small area scan

If theoretical step size of Figure 5.6 is to be calculated:

 ܺ௦௧�௣ = ͵.ͳ͵ ݊݉ ∗ ͷͲ = Ͳ.ͳͷ µ݉

 ௦ܻ௧�௣ = ʹ.ͷʹ ݊݉ ∗ ͷͲ = Ͳ.ͳ͵ µ݉

Since Y axis contains three lines and since the distance between two neighboring lines is 10

µm, complete Y axis covers nearly 20 µm with 200 pixels. From here, experimental

Yresolution or experimental calibration factor (microns per pixel) can be calculated as:

�ܻ�௣�௥�௠�௡௧�௟௥�௦௢௟௨௧�௢௡ ≅ ʹͲ µmʹͲͲ ≅ Ͳ.ͳ µm

Chapter 5: Results and Discussion 63

Same can be said for X axis as well. X axis covers nearly 3 lines (because it is an 200 x 300

image), which is around 30 µm. The resulting Xresolution or experimental calibration factor

(microns per pixel) can be found as:

 ܺ��௣�௥�௠�௡௧�௟௥�௦௢௟௨௧�௢௡ ≅ ͵Ͳ µm͵ͲͲ ≅ Ͳ.ͳ µm

 Another small area scan is performed with 20/65536 step size. This can be seen in

Figure 5.7. In Figure 5.7, only a small part of a single line is scanned. In this scale, X and Y

step sizes can be found as:

 ܺ௦௧�௣ = ͵.ͳ͵ ݊݉ ∗ ʹͲ = Ͳ.Ͳ͸ µ݉

 ௦ܻ௧�௣ = ʹ.ͷʹ ݊݉ ∗ ʹͲ = Ͳ.Ͳͷ µ݉

Figure 5.7 20/65536 small area scan (middle of a single line)

Chapter 5: Results and Discussion 64

Figure 5.8 20/65536 small area scan (end of a single line)

5.4 Conclusion and Current Status

 Results that were detailed in the last section prove that CDAQ and Konfokal

combination is able to acquire confocal images successfully. Theoretically and

experimentally, they can obtain confocal images at decent resolution. Adjustments for

CDAQ can be made for the needed application where the intended resolution or speed is

critical. Availability of modification and openness are most important aspects of this

design. In this context, CDAQ is an open hardware and it forms a boilerplate to researchers

who need to implement an LSCM hardware.

Chapter 5: Results and Discussion 65

 On the other hand, Konfokal also adopts openness philosophy. This makes

Konfokal an open source software and it is available for modification, for other use

scenarios. One example of this is its compatibility with DMD based confocal microscope

which is used as another method in confocal microscopy. Konfokal program is developed

for generating scan patterns for DMD based confocal microscope. It can generate stored

pattern sequences, which can be used for scanning the sample. One of this patterns is

available in Figure 5.9.

 All in all, in this thesis a working hardware and software were developed and

offered for use. This is done in an “open” way and shared with other

researchers/developers. With this hardware/software time and money can be saved while

working on a confocal setup. Others can use these schematics and software as a basis for

their projects. The validity of these designs and implementations were proved by the results

that are detailed in this section.

Chapter 5: Results and Discussion 66

Figure 5.9 Stored pattern generation with Konfokal

Appendix 67

APPENDIX

1. Firmware of MCU1:

/*
 * KUNRL Confocal Project:
 * PWM Control Software for Galvo Mirrors
 *
 * Author & Date:
 * Baran Yalcin, 09.06.2014
 *
 * Description:
 * This program generates the required sawtooth
 * waveform for use with MicroMax 673 series m-
 * otor control board. The required waveform is
 * generated via PWM timer. Oscillator is used
 * for system clock and it is set to 16 MHz.
 * The measured period of interrupt is found as
 * 10 us. Therefore, the period of single
 * PWM pulse is set to 10us. On the other hand
 * PWM pulse has resolution of 0.083 us, which
 * gives 0-120 pulse width range.
 *
 * Aspect ratio can be found as:
 * aspect_ratio = Wave1_freq / Wave2_freq
 *
 *
 * PD0, PB7: PWM Outputs
 * PDO: (X) Higher Frequency
 * PB7: (Y) Lower Frequency
 * Frequency settings can be
 * changed via PWM_FREQUENCY
 */

#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "inc/hw_ints.h"
#include "driverlib/interrupt.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"
#include "driverlib/debug.h"

Appendix 68

#include "driverlib/pwm.h"
#include "driverlib/pin_map.h"
#include "inc/hw_gpio.h"
#include "driverlib/timer.h"
#include "driverlib/rom.h"

#define ISR_PERIOD 100.0
#define M 100
#define N 10
#define WAVE_FREQUENCY 1000
#define ASPECT_RATIO 1

volatile unsigned long ulCounter = 0;
volatile unsigned int uiResolution_PD0;
volatile float fRatio = ISR_PERIOD / M;
volatile float ufStepsize_PD0;
volatile unsigned int uiResolution_PB7;
volatile float ufStepsize_PB7;

void PWM1IntHandler(void)
{
 ROM_PWMGenIntClear(PWM1_BASE,PWM_GEN_0, PWM_INT_CNT_LOAD);

 ROM_PWMPulseWidthSet(PWM1_BASE, PWM_OUT_0, (12 * fRatio) * (((ulCounter/N) %
 M) + 1));

 ROM_PWMPulseWidthSet(PWM0_BASE, PWM_OUT_1, (12 * ISR_PERIOD/(M *
 ASPECT_RATIO)) * (((ulCounter/1000) % (M *
 ASPECT_RATIO)) + 1));

 //ROM_GPIOPinWrite(GPIO_PORTD_BASE, GPIO_PIN_2, 255*(ulCounter % 2));

 ulCounter = ulCounter + 1;
}

int main(void)
{
 unsigned int uiPWMPeriod;
 //
 // PWM period is necessarry for PWMGenPeriodSet.
 // It should be found by ISR_PERIOD/0.0625 us.
 // Here, ISR_PERIOD should be observed with test
 // equipment and written in definitions
 // (in microSeconds).
 //
 uiPWMPeriod = (ISR_PERIOD/0.0625);

 //
 //
 //

Appendix 69

 uiResolution_PD0 = 1/(0.000001 * ISR_PERIOD * WAVE_FREQUENCY) - 1;
 //ufStepsize_PD0 = 120.0/uiResolution_PD0;
 uiResolution_PB7 = 1/(0.000001 * ISR_PERIOD * WAVE_FREQUENCY)/ASPECT_RATIO ;

 //ufStepsize_PB7 = 120.0/uiResolution_PB7;

 //
 // System clock is set to 16 MHz. Main oscillator is used.
 // PWM clock is also set to 16 MHz, giving 62.5 ns clock period.
 //
 ROM_SysCtlClockSet(SYSCTL_SYSDIV_1|SYSCTL_USE_OSC|SYSCTL_OSC_MAIN|SYSCTL_XTAL_1
 6MHZ);
 ROM_SysCtlPWMClockSet(SYSCTL_PWMDIV_1);

 //
 // Peripherals are enabled for PWM0 and PWM1 (PD0 & PB7)
 // and GPIO (PD2) can be used for debugging purposes.
 //
 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM0);
 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM1);
 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);

 //
 // Direction of PD2 is set as output.
 // Pins (PD0 & PB7) are set for PWM signals.
 // Configurations are set for PWM.
 //
 ROM_GPIOPinTypeGPIOOutput(GPIO_PORTD_BASE, GPIO_PIN_2);
 ROM_GPIOPinTypePWM(GPIO_PORTD_BASE, GPIO_PIN_0);
 ROM_GPIOPinTypePWM(GPIO_PORTB_BASE, GPIO_PIN_7);
 ROM_GPIOPinConfigure(GPIO_PD0_M1PWM0);
 ROM_GPIOPinConfigure(GPIO_PB7_M0PWM1);

 //
 // PWM generator configurations are done. Since it is
 // a asymmetric signal, PWM_GEN_MODE_DOWN is selected.
 // PWN_GEN_MODE_GEN_SYNC_GLOBAL done for 2 PWMs.
 //
 ROM_PWMGenConfigure(PWM0_BASE, PWM_GEN_0, PWM_GEN_MODE_DOWN);
 ROM_PWMGenConfigure(PWM1_BASE, PWM_GEN_0, PWM_GEN_MODE_DOWN);
 //ROM_PWMGenConfigure(PWM0_BASE, PWM_GEN_0, PWM_GEN_MODE_DOWN |
 PWM_GEN_MODE_GEN_SYNC_GLOBAL);
 //ROM_PWMGenConfigure(PWM1_BASE, PWM_GEN_0, PWM_GEN_MODE_DOWN |
 PWM_GEN_MODE_GEN_SYNC_GLOBAL);

Appendix 70

 //
 // Minimum PWM period is set as, Tau_ISR / 62.5ns.
 // Tau_ISR value is measured by an oscilloscope or
 // logic analyzer. Since every Tau_ISR was measured
 // as 10 us. It is set as 160.
 // Since we use 2 PWM outputs with different
 // aspect ratios, both must be set to same period.
 //
 ROM_PWMGenPeriodSet(PWM0_BASE, PWM_GEN_0, uiPWMPeriod*10);
 ROM_PWMGenPeriodSet(PWM1_BASE, PWM_GEN_0, uiPWMPeriod);

 //
 // PWM output states are both enabled.
 // PWM generators are both enabled.
 //
 ROM_PWMOutputState(PWM1_BASE, PWM_OUT_0_BIT, true);
 ROM_PWMOutputState(PWM0_BASE, PWM_OUT_1_BIT, true);
 ROM_PWMGenEnable(PWM1_BASE, PWM_GEN_0);
 ROM_PWMGenEnable(PWM0_BASE, PWM_GEN_0);

 //
 // For interrupt to occur, first it should be
 // enabled by IntMasterEnable. Then, we can
 // place PWMIntEnable for PWM1. Trigger is set
 // for PWM_INT_CNT_LOAD. And finally it can be
 // enabled. The ISR can be found as PWM1IntHandler
 // in startup_css.c of the project.
 //
 ROM_IntMasterEnable();
 ROM_PWMIntEnable(PWM1_BASE, PWM_INT_GEN_0);
 ROM_PWMGenIntTrigEnable(PWM1_BASE, PWM_GEN_0, PWM_INT_CNT_LOAD);
 ROM_IntEnable(INT_PWM1_0);

 //
 // Do nothing in the while loop.
 //
 while(1) {
 //SysCtlDelay(1);
 }

}

Appendix 71

2. Firmware of MCU2:

/*
 * KUNRL Confocal Project:
 * DAQ Software for Confocal Project
 *
 * Author & Date:
 * Baran Yalcin, 09.06.2014
 *
 * Description:
 * This program collects PMT and motor position
 * signals, and transfers them through UART.
 * UART speed is 115200 Baud/s.
 * ADC speed is 1 MSPS.
 *
 * PE3-PE2: Y input
 * PD3-PD2: X input
 * PD1-PD0: PMT input
 */

#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"
#include "driverlib/interrupt.h"
#include "driverlib/timer.h"
#include "driverlib/adc.h"
#include "driverlib/pin_map.h"
#include "utils/uartstdio.h"

unsigned long ulADC0_Value[3];

void ADCIntHandler(void)
{
 ADCProcessorTrigger(ADC0_BASE, 2);

 ADCSequenceDataGet(ADC0_BASE, 2, ulADC0_Value);

 // PE3-PE2; PD3-PD2; PD1-PD0;
 UARTprintf("%4d %4d %4d\n", ulADC0_Value[0], ulADC0_Value[1], ulADC0_Value[2]);
 ADCIntClear(ADC0_BASE, 2);
}

Appendix 72

void InitConsole(void)
{
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

 GPIOPinConfigure(GPIO_PA0_U0RX);
 GPIOPinConfigure(GPIO_PA1_U0TX);

 GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);
 UARTStdioInit(0);
}

int main(void)
{
 SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
 SYSCTL_XTAL_16MHZ);

 // Begin UART
 InitConsole();

 // Set pins, peripherals
 SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);

 GPIOPinTypeADC(GPIO_PORTE_BASE, GPIO_PIN_2 | GPIO_PIN_3);
 GPIOPinTypeADC(GPIO_PORTD_BASE, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 |
 GPIO_PIN_3);

 // Set ADC speed and configurations
 SysCtlADCSpeedSet(SYSCTL_ADCSPEED_1MSPS);
 ADCHardwareOversampleConfigure(ADC0_BASE, 64);
 ADCSequenceDisable(ADC0_BASE, 2);
 ADCSequenceConfigure(ADC0_BASE, 2, ADC_TRIGGER_PROCESSOR, 0);

 // PE3 - PE2
 ADCSequenceStepConfigure(ADC0_BASE, 2, 0, ADC_CTL_D | ADC_CTL_CH0);

 // PD3 - PD2
 ADCSequenceStepConfigure(ADC0_BASE, 2, 1, ADC_CTL_D | ADC_CTL_CH2);

 // PD1 - PD0
 ADCSequenceStepConfigure(ADC0_BASE, 2, 2, ADC_CTL_D | ADC_CTL_CH3 | ADC_CTL_IE |
 ADC_CTL_END);

 // Enable interrupts
 ADCSequenceEnable(ADC0_BASE, 2);

 ADCIntClear(ADC0_BASE, 2);
 ADCIntEnable(ADC0_BASE, 2);

Appendix 73

 IntEnable(INT_ADC0SS2); // Turn on Sequence Interrupts fo Seq. 1
 IntMasterEnable(); // Finally -- enable all interrupts and go.

 while(1)
 {
 // Do nothing
 }
}

Appendix 74

3. Python script of the prototype:

data acquisition code
author: Baran Yalcin
this script gets the
UART data, parses
and saves it to .txt files

import time
import serial
import os

========CONTROL========
number of samples taken
sample_number = 20001
write to file 0/1
write_to_file = 1
========CONTROL========

#ser_data for storing the data transfer
#x_data for storing Galvo_X_POS
#y_data for storing Galvo_Y_POS
#img_data for storing only PMT data
ser_data = []
x_data = []
y_data = []
pmt_data = []

#connect to COM3 w/ baud=115200, timeout=1
ser = serial.Serial(2, 115200, timeout=1)

#for calculating time elapsed, start a timer
start = time.clock()

#get 10k samples, write to ser_data
for i in range(sample_number):
 ser_data.append(ser.readline())

#unpacking ser_data to x_data, y_data, img_data
for k in range(1,sample_number):
 y_data.append(ser_data[k].split()[0])
 x_data.append(ser_data[k].split()[1])
 pmt_data.append(ser_data[k].split()[2])

#calculate the elapsed time for process
end = time.clock()
print "Elapsed time is: " , (end - start)

#close the serial port
ser.close()

Appendix 75

#for writing to a file(optional)
if write_to_file:

 #create a directory for storing txt files
 os.mkdir("./ok_run3")

 #change dir and create files
 os.chdir("./ok_run3")
 x_file = open("x_data.txt", "w")
 y_file = open("y_data.txt", "w")
 pmt_file = open("pmt_data.txt", "w")

 #write to files
 for item in range(sample_number-1):
 y_file.write("%s\n" % x_data[item])
 x_file.write("%s\n" % y_data[item])
 pmt_file.write("%s\n" % pmt_data[item])

 x_file.close()
 y_file.close()
 pmt_file.close()

 #get back to old dir
 os.chdir("..") os.chdir("..")

Appendix 76

4. MATLAB script of the prototype:

%
%image formation script:
%
%author: Baran Yalcin
%
%this code generates image using x, y and pmt readings. (position refinement:
applied!)
%
%1. define an interval of full-scan(lim_beg and lim_end)
%2. clip the given x, y, pmt arrays
%3. normalize x and y arrays ([a,b] --> [0, b-a])
%4. adjust the shifting for x array (use debug lines for seeing traces)
%5. form the image
%6. use pcolor to plot image (use debug lines for pmt readings)

close all
clear all

%load the data in the /run dir
load x_data.txt;
load y_data.txt;
load pmt_data.txt;

%define lim_beg, lim_end
lim_beg = 2500;
lim_end = 8745;

%number of samples
sample_no = lim_end - lim_beg;
sample_vector = [1 : sample_no + 1];

%clipping
x_clipped = x_data(lim_beg : lim_end);
y_clipped = y_data(lim_beg : lim_end);
pmt_clipped = pmt_data(lim_beg : lim_end);

%normalization
x_normalized = x_clipped - (min(x_clipped) - 1).*ones(length(x_clipped), 1);
y_normalized = y_clipped - (min(y_clipped) - 1).*ones(length(y_clipped), 1);

k = 1;
while k <= sample_no + 1
 x_shifted(k) = x_normalized(k);
 k = k + 1;
end

Appendix 77

%normalize and scale
%x_shifted = (max(y_normalized)/max(x_shifted))*(-1*min(x_shifted) + x_shifted);

% ===== DEBUG LINES FOR TRACES =====
plot(sample_vector, floor(x_shifted), '-r');
hold on
plot(sample_vector, y_normalized, '-b')
figure
% ===== DEBUG LINES FOR TRACES =====

%create an empty image matrix
%img = zeros(max(y_normalized), max(x_normalized));

%form the image
i = 1;
while i < length(pmt_clipped)
 %img(floor(x_shifted(i))+1, y_normalized(i)) = pmt_clipped(i);
 img(x_normalized(i), y_normalized(i)) = pmt_clipped(i);
 i = i + 1;
end

pcolor(img)
shading flat

% ===== DEBUG LINES FOR PMT DATA =====
figure
plot(sample_vector, pmt_clipped, '-or')
% ===== DEBUG LINES FOR PMT DATA =====

%for grayscale
figure
I = mat2gray(img, [2600 2600]);
imshow(I)

Appendix 78

5. Firmware of CDAQ:

5.1. main.c

/*
 * KUNRL Confocal Project:
 * main.c of CDAQ Firmware
 *
 * Author & Date:
 * Baran Yalcin, 14.10.2014
 *
 */

#include <stdbool.h>
#include <stdint.h>
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/fpu.h"
#include "driverlib/gpio.h"
#include "driverlib/interrupt.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"
#include "driverlib/systick.h"
#include "driverlib/timer.h"
#include "driverlib/uart.h"
#include "driverlib/rom.h"
#include "usblib/usblib.h"
#include "usblib/usb-ids.h"
#include "usblib/device/usbdevice.h"
#include "usblib/device/usbdbulk.h"
#include "utils/uartstdio.h"
#include "utils/ustdlib.h"
#include "usb_bulk_structs.h"
#include "usb_functions.h"
#include "driverlib/ssi.h"
#include "driverlib/adc.h"

int main(void)
{
 volatile uint32_t ui32Loop;
 uint32_t ui32TxCount;
 uint32_t ui32RxCount;

 FPULazyStackingEnable();

Appendix 79

 // Set clock to run from the PLL at 200MHz
 SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
 SYSCTL_XTAL_16MHZ);

 // Open UART0 and show the application name on the UART.
 ConfigureUART();

 // Enable the GPIO peripheral used for USB, and configure the USB pins.
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
 GPIOPinTypeUSBAnalog(GPIO_PORTD_BASE, GPIO_PIN_4 | GPIO_PIN_5);

 ConfigureUSB();

 // Configure ADCs
 SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);

 GPIOPinTypeADC(GPIO_PORTE_BASE, GPIO_PIN_2 | GPIO_PIN_3);
 GPIOPinTypeADC(GPIO_PORTD_BASE, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 |
 GPIO_PIN_3);

 ADCHardwareOversampleConfigure(ADC0_BASE, 8);
 ADCSequenceDisable(ADC0_BASE, 2);
 ADCSequenceConfigure(ADC0_BASE, 2, ADC_TRIGGER_PROCESSOR, 0);

 ADCSequenceStepConfigure(ADC0_BASE, 2, 0, ADC_CTL_D | ADC_CTL_CH0);
 // PE3 - PE2

 ADCSequenceStepConfigure(ADC0_BASE, 2, 1, ADC_CTL_D | ADC_CTL_CH2);
 // PD3 - PD2

 ADCSequenceStepConfigure(ADC0_BASE, 2, 2, ADC_CTL_D | ADC_CTL_CH3 | ADC_CTL_IE
 | ADC_CTL_END);
 // PD1 - PD0

 ADCSequenceEnable(ADC0_BASE, 2);
 ADCIntClear(ADC0_BASE, 2);

 // Configure SSI
 // Initialize SSI0 and SSI1
 SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI0);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI1);

 // Initialize PORTA for SSI0 and PORTF for SSI1
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

Appendix 80

 // Configure SSI0 pins
 GPIOPinConfigure(GPIO_PA2_SSI0CLK);
 GPIOPinConfigure(GPIO_PA3_SSI0FSS);
 GPIOPinConfigure(GPIO_PA5_SSI0TX);
 GPIOPinTypeSSI(GPIO_PORTA_BASE,GPIO_PIN_5|GPIO_PIN_3|GPIO_PIN_2);

 // Configure SSI1 pins
 GPIOPinConfigure(GPIO_PF2_SSI1CLK);
 GPIOPinConfigure(GPIO_PF3_SSI1FSS);
 GPIOPinConfigure(GPIO_PF1_SSI1TX);
 GPIOPinTypeSSI(GPIO_PORTF_BASE,GPIO_PIN_3|GPIO_PIN_2|GPIO_PIN_1);

 // Configure and enable SSI0
 SSIConfigSetExpClk(SSI0_BASE, SysCtlClockGet(), SSI_FRF_MOTO_MODE_1,
 SSI_MODE_MASTER, 10000, 8);
 SSIEnable(SSI0_BASE);

 // Configure and enable SSI1
 SSIConfigSetExpClk(SSI1_BASE, SysCtlClockGet(), SSI_FRF_MOTO_MODE_1,
 SSI_MODE_MASTER, 10000, 8);
 SSIEnable(SSI1_BASE);

 // Clear our local byte counters.
 ui32RxCount = 0;
 ui32TxCount = 0;

 // Main application loop.
 while(1)
 {
 }
}

Appendix 81

5.2. scan_functions.c

/*
 * KUNRL Confocal Project:
 * scan_functions.c of CDAQ Firmware
 *
 * Author & Date:
 * Baran Yalcin, 14.10.2014
 *
 */
#include <stdbool.h>
#include <stdint.h>
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/fpu.h"
#include "driverlib/gpio.h"
#include "driverlib/interrupt.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"
#include "driverlib/systick.h"
#include "driverlib/timer.h"
#include "driverlib/uart.h"
#include "driverlib/rom.h"
#include "usblib/usblib.h"
#include "usblib/usb-ids.h"
#include "usblib/device/usbdevice.h"
#include "usblib/device/usbdbulk.h"
#include "utils/uartstdio.h"
#include "utils/ustdlib.h"
#include "usb_bulk_structs.h"
#include "usb_functions.h"
#include "driverlib/ssi.h"
#include "driverlib/adc.h"
#include "driverlib/usb.h"

uint32_t ui32ADC0_Value[3];
uint8_t ui32RxQueue[64];
bool gbLAST = 0;

// Performs scan operation for sawtooth waveform
void scan_sawtooth(uint16_t ui16X_BEG, uint16_t ui16X_END, uint16_t ui16X_RES,
 uint16_t ui16Y_BEG, uint16_t ui16Y_END, uint16_t ui16Y_RES,
 uint16_t ui16DAMP)
{
 uint16_t ui16X_NOW = ui16X_BEG;
 uint16_t ui16Y_NOW = ui16Y_BEG;
 uint32_t ui32Round = 0;
 uint16_t ui16Damping = ui16DAMP;
 uint8_t ui8Count;

Appendix 82

 while (ui16Y_NOW <= ui16Y_END) {
 ui8Count = 0;
 while(ui16X_NOW <= ui16X_END) {

 /*
 if(ui16Y_NOW == ui16Y_END && ui16X_NOW == ui16X_END)
 {
 gbLAST = 1;
 }
 */
 move(ui16X_NOW, ui16Y_NOW);

 if(ui32Round >= 60)
 {
 // If full, send and flush
 send(ui32RxQueue, 60);
 ui32Round = 0;
 }
 sample(ui32Round);
 ui32Round += 12;

 ui16X_NOW += ui16X_RES;
 }

 while(ui8Count < ui16Damping)
 {
 ui8Count++;
 move(ui16X_END-ui8Count*(ui16X_END-ui16X_BEG)/ui16Damping,
 ui16Y_NOW);
 }
 ui16X_NOW = ui16X_BEG;
 ui16Y_NOW += ui16Y_RES;
 }
}

// Performs scan operation for sawtooth waveform
void scan_triangle(uint16_t ui16X_BEG, uint16_t ui16X_END, uint16_t ui16X_RES,
 uint16_t ui16Y_BEG, uint16_t ui16Y_END, uint16_t ui16Y_RES)
{
 uint16_t ui16X_NOW = ui16X_BEG;
 uint16_t ui16Y_NOW = ui16Y_BEG;
 uint32_t ui32Round = 0;
 uint8_t ui8Count;

Appendix 83

 while (ui16Y_NOW <= ui16Y_END) {

 while(ui16X_NOW < ui16X_END) {

 move(ui16X_NOW, ui16Y_NOW);

 if(ui32Round >= 60)
 {
 // If full, send and flush
 send(ui32RxQueue, 60);
 ui32Round = 0;
 }
 sample(ui32Round);
 ui32Round += 12;
 ui16X_NOW += ui16X_RES;
 }

 while(ui16X_NOW > ui16X_BEG){

 move(ui16X_NOW, ui16Y_NOW);

 if(ui32Round >= 60)
 {
 // If full, send and flush
 send(ui32RxQueue, 60);
 ui32Round = 0;
 }
 sample(ui32Round);
 ui32Round += 12;
 ui16X_NOW -= ui16X_RES;
 }

 ui16X_NOW = ui16X_BEG;
 ui16Y_NOW += ui16Y_RES;
 }

}

// Moves the spot to given place
void move(uint16_t ui16X_NOW, uint16_t ui16Y_NOW)
{
 int valX_high = (ui16X_NOW>>8) & 0x0000FF;
 int valX_low = ui16X_NOW & 0x0000FF;

 int valY_high = (ui16Y_NOW>>8) & 0x0000FF;
 int valY_low = ui16Y_NOW & 0x0000FF;

 while(SSIBusy(SSI0_BASE));
 SSIDataPut(SSI0_BASE, 0x00);
 SSIDataPut(SSI0_BASE, valX_high);
 SSIDataPut(SSI0_BASE, valX_low);

Appendix 84

 while(SSIBusy(SSI1_BASE));
 SSIDataPut(SSI1_BASE, 0x00);
 SSIDataPut(SSI1_BASE, valY_high);
 SSIDataPut(SSI1_BASE, valY_low);
}

void sample(uint32_t ui32Round)
{
 // Trigger the ADC conversion.
 ADCProcessorTrigger(ADC0_BASE, 2);
 // Wait for conversion to be completed.
 while(!ADCIntStatus(ADC0_BASE, 2, false));
 // Clear the ADC interrupt flag.
 ADCIntClear(ADC0_BASE, 2);
 // Read ADC Value.
 ADCSequenceDataGet(ADC0_BASE, 2, ui32ADC0_Value);

 // Store to RX queue
 // Convert first int to 4 bytes
 ui32RxQueue[ui32Round] = ui32ADC0_Value[0]/1000 + '0';
 ui32RxQueue[ui32Round+1] = (ui32ADC0_Value[0]%1000)/100 + '0';
 ui32RxQueue[ui32Round+2] = (ui32ADC0_Value[0]%100)/10 + '0';
 ui32RxQueue[ui32Round+3] = (ui32ADC0_Value[0]%10) + '0';

 // Convert second int to 4 bytes
 ui32RxQueue[ui32Round+4] = ui32ADC0_Value[1]/1000 + '0';
 ui32RxQueue[ui32Round+5] = (ui32ADC0_Value[1]%1000)/100 + '0';
 ui32RxQueue[ui32Round+6] = (ui32ADC0_Value[1]%100)/10 + '0';
 ui32RxQueue[ui32Round+7] = (ui32ADC0_Value[1]%10) + '0';

 // Convert third int to 4 bytes
 ui32RxQueue[ui32Round+8] = ui32ADC0_Value[2]/1000 + '0';
 ui32RxQueue[ui32Round+9] = (ui32ADC0_Value[2]%1000)/100 + '0';
 ui32RxQueue[ui32Round+10] = (ui32ADC0_Value[2]%100)/10 + '0';
 ui32RxQueue[ui32Round+11] = (ui32ADC0_Value[2]%10) + '0';

}

void send(uint8_t *pui8Data, uint32_t ui32NumBytes)
{
 int8_t USB_status;

 ui32RxQueue[60] = 'O';
 ui32RxQueue[61] = 'K';
 ui32RxQueue[62] = 'O';
 ui32RxQueue[63] = 'K';

 USB_status = USBEndpointDataPut(USB0_BASE, USB_EP_1, ui32RxQueue, 64);

 while (USB_status == -1) {
 USB_status = USBEndpointDataPut(USB0_BASE, USB_EP_1,ui32RxQueue, 64);
 }

Appendix 85

 USB_status = USBEndpointDataSend(USB0_BASE, USB_EP_1,USB_TRANS_OUT);

 while (USB_status == -1) {
 USB_status = USBEndpointDataSend(USB0_BASE, USB_EP_1,USB_TRANS_OUT);
 }
}

Appendix 86

5.3. scan_functions.h

/*
 * KUNRL Confocal Project:
 * scan_functions.h of CDAQ Firmware
 *
 * Author & Date:
 * Baran Yalcin, 14.10.2014
 *
 */

#ifndef SCAN_FUNCTIONS_H_

#define SCAN_FUNCTIONS_H_

extern uint32_t ui32ADC0_Value[3];

extern uint8_t ui32RxQueue[1200];

extern void scan_sawtooth(uint16_t ui16X_BEG, uint16_t ui16X_END,

 uint16_t ui16X_RES, uint16_t ui16Y_BEG,

 uint16_t ui16Y_END, uint16_t ui16Y_RES, uint16_t ui16DAMP);

extern void scan_triangle(uint16_t ui16X_BEG, uint16_t ui16X_END,

 uint16_t ui16X_RES, uint16_t ui16Y_BEG,

 uint16_t ui16Y_END, uint16_t ui16Y_RES);

extern void move(uint16_t ui16X_POS, uint16_t ui16Y_POS);

extern void sample(uint32_t ui32Round);

extern void send(uint8_t *pui8Data, uint32_t ui32NumBytes);

#endif /* SCAN_FUNCTIONS_H_ */

Appendix 87

5.4. usb_bulk_structs.c

/*
 * KUNRL Confocal Project:
 * usb_bulk_structs.c of CDAQ Firmware
 *
 * Author & Date:
 * Baran Yalcin, 14.10.2014
 *
 */

#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_types.h"
#include "driverlib/usb.h"
#include "usblib/usblib.h"
#include "usblib/usb-ids.h"
#include "usblib/device/usbdevice.h"
#include "usblib/device/usbdbulk.h"
#include "usb_bulk_structs.h"

// The language supported by this device.
const uint8_t g_pui8LangDescriptor[] =
{
 4,
 USB_DTYPE_STRING,
 USBShort(USB_LANG_EN_US)
};

// The manufacturer string.
const uint8_t g_pui8ManufacturerString[] =
{
 (17 + 1) * 2,
 USB_DTYPE_STRING,
 'T', 0, 'e', 0, 'x', 0, 'a', 0, 's', 0, ' ', 0, 'I', 0, 'n', 0, 's', 0,
 't', 0, 'r', 0, 'u', 0, 'm', 0, 'e', 0, 'n', 0, 't', 0, 's', 0,
};

// The product string.
const uint8_t g_pui8ProductString[] =
{
 (19 + 1) * 2,
 USB_DTYPE_STRING,
 'G', 0, 'e', 0, 'n', 0, 'e', 0, 'r', 0, 'i', 0, 'c', 0, ' ', 0, 'B', 0,
 'u', 0, 'l', 0, 'k', 0, ' ', 0, 'D', 0, 'e', 0, 'v', 0, 'i', 0, 'c', 0,
 'e', 0
};

Appendix 88

// The serial number string.
const uint8_t g_pui8SerialNumberString[] =
{
 (8 + 1) * 2,
 USB_DTYPE_STRING,
 '1', 0, '2', 0, '3', 0, '4', 0, '5', 0, '6', 0, '7', 0, '8', 0
};

// The data interface description string.
const uint8_t g_pui8DataInterfaceString[] =
{
 (19 + 1) * 2,
 USB_DTYPE_STRING,
 'B', 0, 'u', 0, 'l', 0, 'k', 0, ' ', 0, 'D', 0, 'a', 0, 't', 0,
 'a', 0, ' ', 0, 'I', 0, 'n', 0, 't', 0, 'e', 0, 'r', 0, 'f', 0,
 'a', 0, 'c', 0, 'e', 0
};

// The configuration description string.
const uint8_t g_pui8ConfigString[] =
{
 (23 + 1) * 2,
 USB_DTYPE_STRING,
 'B', 0, 'u', 0, 'l', 0, 'k', 0, ' ', 0, 'D', 0, 'a', 0, 't', 0,
 'a', 0, ' ', 0, 'C', 0, 'o', 0, 'n', 0, 'f', 0, 'i', 0, 'g', 0,
 'u', 0, 'r', 0, 'a', 0, 't', 0, 'i', 0, 'o', 0, 'n', 0
};

// The descriptor string table.
const uint8_t * const g_ppui8StringDescriptors[] =
{
 g_pui8LangDescriptor,
 g_pui8ManufacturerString,
 g_pui8ProductString,
 g_pui8SerialNumberString,
 g_pui8DataInterfaceString,
 g_pui8ConfigString
};

#define NUM_STRING_DESCRIPTORS (sizeof(g_ppui8StringDescriptors) / sizeof(uint8_t *))

// The bulk device initializatiın and customization structures.
extern const tUSBBuffer g_sTxBuffer;
extern const tUSBBuffer g_sRxBuffer;

Appendix 89

tUSBDBulkDevice g_sBulkDevice =
{
 USB_VID_TI_1CBE,
 USB_PID_BULK,
 500,
 USB_CONF_ATTR_SELF_PWR,
 USBBufferEventCallback,
 (void *)&g_sRxBuffer,
 USBBufferEventCallback,
 (void *)&g_sTxBuffer,
 g_ppui8StringDescriptors,
 NUM_STRING_DESCRIPTORS
};

// Receive buffer(from the USB perspective).
uint8_t g_pui8USBRxBuffer[BULK_BUFFER_SIZE];
uint8_t g_pui8RxBufferWorkspace[USB_BUFFER_WORKSPACE_SIZE];
const tUSBBuffer g_sRxBuffer =
{
 false,
 RxHandler,
 (void *)&g_sBulkDevice,
 USBDBulkPacketRead,
 USBDBulkRxPacketAvailable,
 (void *)&g_sBulkDevice,
 g_pui8USBRxBuffer,
 BULK_BUFFER_SIZE,
 g_pui8RxBufferWorkspace
};

// Transmit buffer.
uint8_t g_pui8USBTxBuffer[BULK_BUFFER_SIZE];
uint8_t g_pui8TxBufferWorkspace[USB_BUFFER_WORKSPACE_SIZE];
const tUSBBuffer g_sTxBuffer =
{
 true,
 TxHandler,
 (void *)&g_sBulkDevice,
 USBDBulkPacketWrite,
 USBDBulkTxPacketAvailable,
 (void *)&g_sBulkDevice,
 g_pui8USBTxBuffer,
 BULK_BUFFER_SIZE,
 g_pui8TxBufferWorkspace
};

Appendix 90

5.5. usb_bulk_structs.h

/*
 * KUNRL Confocal Project:
 * usb_bulk_structs.h of CDAQ Firmware
 *
 * Author & Date:
 * Baran Yalcin, 14.10.2014
 *
 */

#ifndef _USB_BULK_STRUCTS_H_
#define _USB_BULK_STRUCTS_H_

#define BULK_BUFFER_SIZE 64

extern uint32_t RxHandler(void *pvCBData, uint32_t ui32Event,
 uint32_t ui32MsgValue, void *pvMsgData);
extern uint32_t TxHandler(void *pvi32CBData, uint32_t ui32Event,
 uint32_t ui32MsgValue, void *pvMsgData);

extern const tUSBBuffer g_sTxBuffer;
extern const tUSBBuffer g_sRxBuffer;
extern tUSBDBulkDevice g_sBulkDevice;
extern uint8_t g_pui8USBTxBuffer[];
extern uint8_t g_pui8USBRxBuffer[];

#endif

Appendix 91

5.6. usb_functions.c

/*
 * KUNRL Confocal Project:
 * usb_functions.c of CDAQ Firmware
 *
 * Author & Date:
 * Baran Yalcin, 14.10.2014
 *
 */

/* Define all USB related functions/interrupts here */

#include <stdbool.h>
#include <stdint.h>
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/fpu.h"
#include "driverlib/gpio.h"
#include "driverlib/interrupt.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"
#include "driverlib/systick.h"
#include "driverlib/timer.h"
#include "driverlib/uart.h"
#include "driverlib/rom.h"
#include "usblib/usblib.h"
#include "usblib/usb-ids.h"
#include "usblib/device/usbdevice.h"
#include "usblib/device/usbdbulk.h"
#include "utils/uartstdio.h"
#include "utils/ustdlib.h"
#include "usb_bulk_structs.h"
#include "scan_functions.h"
#include "driverlib/ssi.h"

// Keep track of receive and transmit counts.
volatile uint32_t g_ui32TxCount = 0;
volatile uint32_t g_ui32RxCount = 0;

// Flags for passing commands from interrupt context to the main loop.
#define COMMAND_PACKET_RECEIVED 0x00000001
#define COMMAND_STATUS_UPDATE 0x00000002

volatile uint32_t g_ui32Flags = 0;

Appendix 92

// Flag for USB configuration has been set.
static volatile bool g_bUSBConfigured = false;

void ReconfigureSSI(uint32_t ui32SPEED){
 // Configure SSI
 // Initialize SSI0 and SSI1
 SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI0);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI1);

 // Initialize PORTA for SSI0 and PORTF for SSI1
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

 // Configure SSI0 pins
 GPIOPinConfigure(GPIO_PA2_SSI0CLK);
 GPIOPinConfigure(GPIO_PA3_SSI0FSS);
 GPIOPinConfigure(GPIO_PA5_SSI0TX);
 GPIOPinTypeSSI(GPIO_PORTA_BASE,GPIO_PIN_5|GPIO_PIN_3|GPIO_PIN_2);

 // Configure SSI1 pins
 GPIOPinConfigure(GPIO_PF2_SSI1CLK);
 GPIOPinConfigure(GPIO_PF3_SSI1FSS);
 GPIOPinConfigure(GPIO_PF1_SSI1TX);
 GPIOPinTypeSSI(GPIO_PORTF_BASE,GPIO_PIN_3|GPIO_PIN_2|GPIO_PIN_1);

 // Configure and enable SSI0
 SSIConfigSetExpClk(SSI0_BASE, SysCtlClockGet(), SSI_FRF_MOTO_MODE_1,
 SSI_MODE_MASTER, ui32SPEED, 8);
 SSIEnable(SSI0_BASE);

 // Configure and enable SSI1
 SSIConfigSetExpClk(SSI1_BASE, SysCtlClockGet(), SSI_FRF_MOTO_MODE_1,
 SSI_MODE_MASTER, ui32SPEED, 8);
 SSIEnable(SSI1_BASE);
}

// Parses X_BEG, X_END, X_RES, Y_BEG, Y_END, Y_RES from received data
static void ParseData(tUSBDBulkDevice *psDevice, uint8_t *pui8Data, uint32_t
ui32NumBytes)
{
 uint16_t ui16X_BEG, ui16X_END, ui16X_RES, ui16Y_BEG, ui16Y_END, ui16Y_RES,
 ui16DAMP;
 uint32_t ui32SPEED;

 uint32_t ui32ReadIndex;

 // Update receive counter.
 g_ui32RxCount += ui32NumBytes;

Appendix 93

 // Set up to process the characters by directly accessing the USB buffers.
 ui32ReadIndex = (uint32_t)(pui8Data - g_pui8USBRxBuffer);
 tUSBRingBufObject sTxRing;

 USBBufferInfoGet(&g_sTxBuffer, &sTxRing);

 if(g_pui8USBRxBuffer[ui32ReadIndex] == 'S') {
 ui32ReadIndex++;
 // First for X
 ui16X_BEG = 10000*(g_pui8USBRxBuffer[ui32ReadIndex] - '0')
 +1000*(g_pui8USBRxBuffer[ui32ReadIndex+1] - '0')
 +100*(g_pui8USBRxBuffer[ui32ReadIndex+2] - '0')
 +10*(g_pui8USBRxBuffer[ui32ReadIndex+3] - '0')
 +1*(g_pui8USBRxBuffer[ui32ReadIndex+4] - '0');

 ui16X_END = 10000*(g_pui8USBRxBuffer[ui32ReadIndex+6] - '0')
 +1000*(g_pui8USBRxBuffer[ui32ReadIndex+7] - '0')
 +100*(g_pui8USBRxBuffer[ui32ReadIndex+8] - '0')
 +10*(g_pui8USBRxBuffer[ui32ReadIndex+9] - '0')
 +1*(g_pui8USBRxBuffer[ui32ReadIndex+10] - '0');

 ui16X_RES = 10000*(g_pui8USBRxBuffer[ui32ReadIndex+12] - '0')
 +1000*(g_pui8USBRxBuffer[ui32ReadIndex+13] - '0')
 +100*(g_pui8USBRxBuffer[ui32ReadIndex+14] - '0')
 +10*(g_pui8USBRxBuffer[ui32ReadIndex+15] - '0')
 +1*(g_pui8USBRxBuffer[ui32ReadIndex+16] - '0');

 // Then for Y
 ui16Y_BEG = 10000*(g_pui8USBRxBuffer[ui32ReadIndex+18] - '0')
 +1000*(g_pui8USBRxBuffer[ui32ReadIndex+19] - '0')
 +100*(g_pui8USBRxBuffer[ui32ReadIndex+20] - '0')
 +10*(g_pui8USBRxBuffer[ui32ReadIndex+21] - '0')
 +1*(g_pui8USBRxBuffer[ui32ReadIndex+22] - '0');

 ui16Y_END = 10000*(g_pui8USBRxBuffer[ui32ReadIndex+24] - '0')
 +1000*(g_pui8USBRxBuffer[ui32ReadIndex+25] - '0')
 +100*(g_pui8USBRxBuffer[ui32ReadIndex+26] - '0')
 +10*(g_pui8USBRxBuffer[ui32ReadIndex+27] - '0')
 +1*(g_pui8USBRxBuffer[ui32ReadIndex+28] - '0');

 ui16Y_RES = 10000*(g_pui8USBRxBuffer[ui32ReadIndex+30] - '0')
 +1000*(g_pui8USBRxBuffer[ui32ReadIndex+31] - '0')
 +100*(g_pui8USBRxBuffer[ui32ReadIndex+32] - '0')
 +10*(g_pui8USBRxBuffer[ui32ReadIndex+33] - '0')
 +1*(g_pui8USBRxBuffer[ui32ReadIndex+34] - '0');

Appendix 94

 ui32SPEED = 1000000*(g_pui8USBRxBuffer[ui32ReadIndex+36] - '0')
 +100000*(g_pui8USBRxBuffer[ui32ReadIndex+37] - '0')
 +10000*(g_pui8USBRxBuffer[ui32ReadIndex+38] - '0')
 +1000*(g_pui8USBRxBuffer[ui32ReadIndex+39] - '0')
 +100*(g_pui8USBRxBuffer[ui32ReadIndex+40] - '0')
 +10*(g_pui8USBRxBuffer[ui32ReadIndex+41] - '0')
 +1*(g_pui8USBRxBuffer[ui32ReadIndex+42] - '0');

 ui16DAMP = 100*(g_pui8USBRxBuffer[ui32ReadIndex+44] - '0')
 +10*(g_pui8USBRxBuffer[ui32ReadIndex+45] - '0')
 +1*(g_pui8USBRxBuffer[ui32ReadIndex+46] - '0');

 ReconfigureSSI(ui32SPEED);
 scan_sawtooth(ui16X_BEG, ui16X_END, ui16X_RES, ui16Y_BEG, ui16Y_END,
 ui16Y_RES , ui16DAMP);
 }

 if(g_pui8USBRxBuffer[ui32ReadIndex] == 'T') {
 ui32ReadIndex++;
 // First for X
 ui16X_BEG = 10000*(g_pui8USBRxBuffer[ui32ReadIndex] - '0')
 +1000*(g_pui8USBRxBuffer[ui32ReadIndex+1] - '0')
 +100*(g_pui8USBRxBuffer[ui32ReadIndex+2] - '0')
 +10*(g_pui8USBRxBuffer[ui32ReadIndex+3] - '0')
 +1*(g_pui8USBRxBuffer[ui32ReadIndex+4] - '0');

 ui16X_END = 10000*(g_pui8USBRxBuffer[ui32ReadIndex+6] - '0')
 +1000*(g_pui8USBRxBuffer[ui32ReadIndex+7] - '0')
 +100*(g_pui8USBRxBuffer[ui32ReadIndex+8] - '0')
 +10*(g_pui8USBRxBuffer[ui32ReadIndex+9] - '0')
 +1*(g_pui8USBRxBuffer[ui32ReadIndex+10] - '0');

 ui16X_RES = 10000*(g_pui8USBRxBuffer[ui32ReadIndex+12] - '0')
 +1000*(g_pui8USBRxBuffer[ui32ReadIndex+13] - '0')
 +100*(g_pui8USBRxBuffer[ui32ReadIndex+14] - '0')
 +10*(g_pui8USBRxBuffer[ui32ReadIndex+15] - '0')
 +1*(g_pui8USBRxBuffer[ui32ReadIndex+16] - '0');

 // Then for Y
 ui16Y_BEG = 10000*(g_pui8USBRxBuffer[ui32ReadIndex+18] - '0')
 +1000*(g_pui8USBRxBuffer[ui32ReadIndex+19] - '0')
 +100*(g_pui8USBRxBuffer[ui32ReadIndex+20] - '0')
 +10*(g_pui8USBRxBuffer[ui32ReadIndex+21] - '0')
 +1*(g_pui8USBRxBuffer[ui32ReadIndex+22] - '0');

Appendix 95

 ui16Y_END = 10000*(g_pui8USBRxBuffer[ui32ReadIndex+24] - '0')
 +1000*(g_pui8USBRxBuffer[ui32ReadIndex+25] - '0')
 +100*(g_pui8USBRxBuffer[ui32ReadIndex+26] - '0')
 +10*(g_pui8USBRxBuffer[ui32ReadIndex+27] - '0')
 +1*(g_pui8USBRxBuffer[ui32ReadIndex+28] - '0');

 ui16Y_RES = 10000*(g_pui8USBRxBuffer[ui32ReadIndex+30] - '0')
 +1000*(g_pui8USBRxBuffer[ui32ReadIndex+31] - '0')
 +100*(g_pui8USBRxBuffer[ui32ReadIndex+32] - '0')
 +10*(g_pui8USBRxBuffer[ui32ReadIndex+33] - '0')
 +1*(g_pui8USBRxBuffer[ui32ReadIndex+34] - '0');

 ui32SPEED = 1000000*(g_pui8USBRxBuffer[ui32ReadIndex+36] - '0')
 +100000*(g_pui8USBRxBuffer[ui32ReadIndex+37] - '0')
 +10000*(g_pui8USBRxBuffer[ui32ReadIndex+38] - '0')
 +1000*(g_pui8USBRxBuffer[ui32ReadIndex+39] - '0')
 +100*(g_pui8USBRxBuffer[ui32ReadIndex+40] - '0')
 +10*(g_pui8USBRxBuffer[ui32ReadIndex+41] - '0')
 +1*(g_pui8USBRxBuffer[ui32ReadIndex+42] - '0');

 ReconfigureSSI(ui32SPEED);
 scan_triangle(ui16X_BEG, ui16X_END, ui16X_RES, ui16Y_BEG, ui16Y_END,
 ui16Y_RES);
 }
}

// Receive new data and echo. Called by RxHandler.
static uint32_t EchoNewDataToHost(tUSBDBulkDevice *psDevice, uint8_t *pui8Data,
 uint32_t ui32NumBytes)
{
 uint32_t ui32Loop, ui32Space, ui32Count;
 uint32_t ui32ReadIndex;
 uint32_t ui32WriteIndex;
 tUSBRingBufObject sTxRing;

 USBBufferInfoGet(&g_sTxBuffer, &sTxRing);

 ui32Space = USBBufferSpaceAvailable(&g_sTxBuffer);
 ui32Loop = (ui32Space < ui32NumBytes) ? ui32Space : ui32NumBytes;
 ui32Count = ui32Loop;

 // Update receive counter.
 g_ui32RxCount += ui32NumBytes;

 // Set up to process the characters by directly accessing the USB buffers.
 ui32ReadIndex = (uint32_t)(pui8Data - g_pui8USBRxBuffer);
 ui32WriteIndex = sTxRing.ui32WriteIndex;

Appendix 96

 while(ui32Loop) {

 //g_pui8USBTxBuffer[ui32WriteIndex] = g_pui8USBRxBuffer[ui32ReadIndex];
 // Unpack the scan elements here
 // Move to the next character taking care to adjust the pointer for
 // the buffer wrap if necessary.
 ui32WriteIndex++;
 ui32WriteIndex = (ui32WriteIndex == BULK_BUFFER_SIZE) ? 0 :
 ui32WriteIndex;

 ui32ReadIndex++;
 ui32ReadIndex = (ui32ReadIndex == BULK_BUFFER_SIZE) ? 0 : ui32ReadIndex;

 ui32Loop--;
 }
 // Send it back.
 USBBufferDataWritten(&g_sTxBuffer, ui32Count);
 return (ui32Count);
}

uint32_t TxHandler(void *pvCBData, uint32_t ui32Event, uint32_t ui32MsgValue, void
 *pvMsgData)
{
 if(ui32Event == USB_EVENT_TX_COMPLETE) {
 g_ui32TxCount += ui32MsgValue;
 }
 return (0);
}

uint32_t RxHandler(void *pvCBData, uint32_t ui32Event, uint32_t ui32MsgValue, void
 *pvMsgData)
{
 switch(ui32Event)
 {
 case USB_EVENT_CONNECTED:
 {
 g_bUSBConfigured = true;

 USBBufferFlush(&g_sTxBuffer);
 USBBufferFlush(&g_sRxBuffer);
 break;
 }

 case USB_EVENT_DISCONNECTED:
 {
 g_bUSBConfigured = false;
 break;
 }

Appendix 97

 case USB_EVENT_RX_AVAILABLE:
 {
 tUSBDBulkDevice *psDevice;
 psDevice = (tUSBDBulkDevice *)pvCBData;
 ParseData(psDevice, pvMsgData, ui32MsgValue);
 //ParseData(psDevice, pvMsgData, ui32MsgValue);
 //return(EchoNewDataToHost(psDevice, pvMsgData, ui32MsgValue));
 }

 case USB_EVENT_SUSPEND:
 case USB_EVENT_RESUME:
 {
 break;
 }

 default:
 {
 break;
 }
 }
 return (0);
}

void ConfigureUART(void)
{
 // Enable the GPIO Peripheral used by the UART.
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

 // Enable UART0
 SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);

 // Configure GPIO Pins for UART mode.
 GPIOPinConfigure(GPIO_PA0_U0RX);
 GPIOPinConfigure(GPIO_PA1_U0TX);
 GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

 // Use the internal 16MHz oscillator as the UART clock source.
 UARTClockSourceSet(UART0_BASE, UART_CLOCK_PIOSC);

 // Initialize the UART for console I/O.
 UARTStdioConfig(0, 115200, 16000000);
}

void ConfigureUSB(void)
{
 // Not configured initially.
 g_bUSBConfigured = false;

Appendix 98

 // Initialize the transmit and receive buffers.
 USBBufferInit(&g_sTxBuffer);
 USBBufferInit(&g_sRxBuffer);

 // Set the USB stack mode to Device mode with VBUS monitoring.
 USBStackModeSet(0, eUSBModeForceDevice, 0);

 // Pass our device information to the USB library and place the device on the
bus.
 USBDBulkInit(0, &g_sBulkDevice);
}

Appendix 99

5.7. usb_functions.h

/*
 * KUNRL Confocal Project:
 * usb_functions.h of CDAQ Firmware
 *
 * Author & Date:
 * Baran Yalcin, 14.10.2014
 *
 */

#ifndef USB_FUNCTIONS_H_
#define USB_FUNCTIONS_H_

#define COMMAND_PACKET_RECEIVED 0x00000001
#define COMMAND_STATUS_UPDATE 0x00000002

extern volatile uint32_t g_ui32TxCount;
extern volatile uint32_t g_ui32RxCount;

extern volatile uint32_t g_ui32Flags;
extern volatile bool g_bUSBConfigured;

extern uint32_t ParseData(tUSBDBulkDevice *psDevice, uint8_t *pui8Data, uint32_t
 ui32NumBytes);
extern uint32_t EchoNewDataToHost(tUSBDBulkDevice *psDevice, uint8_t *pui8Data,
 uint32_t ui32NumBytes);
extern uint32_t TxHandler(void *pvCBData, uint32_t ui32Event, uint32_t ui32MsgValue,
 void *pvMsgData);
extern uint32_t RxHandler(void *pvCBData, uint32_t ui32Event, uint32_t ui32MsgValue,
 void *pvMsgData);
extern void ConfigureUART(void);
extern void ConfigureUSB(void);

#endif /* USB_FUNCTIONS_H_ */

Appendix 100

6. Konfokal Source Code

6.1. ui.py

from __future__ import division
import os
import platform
import sys

from PyQt4.QtCore import *
from PyQt4.QtGui import *
from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.backends.backend_qt4agg import NavigationToolbar2QTAgg as
NavigationToolbar

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np

import ui.qrc_resources as qrc_resources
import ui.newsessiondlg as newsessiondlg
import ui.newscanwzd as newscanwzd
import core, utils, dev

__version__ = "1.0.0"
__author__ = "Baran Yalcin"

class MainWindow(QMainWindow):

 def __init__(self, parent=None):
 super(MainWindow, self).__init__(parent)

 # sessionDict contains Sessions and their children(Scans)
 self.sessionDict = {}
 # Set windowtitle, icon and statusbar
 self.setWindowTitle("Konfokal")
 status = self.statusBar().showMessage("Ready")

 # Holds unsaved changes
 self.dirty = False
 self.filename = None
 self.directory = None

 # Selected item list
 self.selecteditem = []

 # Last scan: for quick scan
 self.lastscan = None

 self.currentImage = None
 self.currentPlot = None

Appendix 101

 # Window properties/widgets
 navigatorDockWidget = QDockWidget()
 navigatorDockWidget.setAllowedAreas(Qt.LeftDockWidgetArea |
 Qt.RightDockWidgetArea)

 # Left pane navigation treeWidget
 self.navigatorWidget = QTreeWidget()
 self.navigatorWidget.setHeaderLabel("Navigator")
 navigatorDockWidget.setWidget(self.navigatorWidget)
 self.addDockWidget(Qt.LeftDockWidgetArea, navigatorDockWidget)

 # Create a tab widget for displaying plot/image
 # Set as central widget
 self.plot = plt.figure()
 self.plotCanvas = FigureCanvas(self.plot)
 self.image = plt.figure()
 self.imageCanvas = FigureCanvas(self.image)

 # Add plot toolbars
 self.plotToolbar = NavigationToolbar(self.plotCanvas, self)
 self.imageToolbar = NavigationToolbar(self.imageCanvas, self)

 vbox_img = QVBoxLayout()
 vbox_img.addWidget(self.imageCanvas)
 vbox_img.addWidget(self.imageToolbar)

 vbox_plt = QVBoxLayout()
 vbox_plt.addWidget(self.plotCanvas)
 vbox_plt.addWidget(self.plotToolbar)

 imageWidget = QWidget()
 imageWidget.setLayout(vbox_img)

 plotWidget = QWidget()
 plotWidget.setLayout(vbox_plt)

 self.tabWidget = QTabWidget()
 self.tabWidget.addTab(plotWidget, "Plot")
 self.tabWidget.addTab(imageWidget, "Image")

 #ax = self.plot.add_subplot(111)
 #ax.plot([1,2,3])
 #self.plotCanvas.print_figure('test')
 #self.plotCanvas.print_figure('plot30.png')

 #self.displayImage('plot30.png')

Appendix 102

 self.setCentralWidget(self.tabWidget)

 # Create the menuBar, add menus
 self.fileMenu = self.menuBar().addMenu("&File")
 self.editMenu = self.menuBar().addMenu("&Edit")
 self.scanMenu = self.menuBar().addMenu("&Scan")
 self.helpMenu = self.menuBar().addMenu("&Help")

 # Create File Menu actions and add them
 fileNewSessionAction = self.createAction("&New Session",
 self.fileNewSession,
 QKeySequence.New,
 "newsession",
 "Create a new session")

 fileLoadSessionAction = self.createAction("&Load Session",
 self.fileLoadSession,
 "Ctrl+L",
 "loadsession",
 "Load a session")

 fileSaveSessionAction = self.createAction("&Save Session",
 self.fileSaveSession,
 QKeySequence.Save,
 "savesession",
 "Save the session")

 fileSaveAsSessionAction = self.createAction("&Save As...",
 self.fileSaveAsSession,
 "Ctrl+Shift+S",
 "saveassession",
 "Save as...")

 fileExportAction = self.createAction("&Export", self.fileExport,
 "Ctrl+E", "exportsession",
 "Export report/data/image")

 fileSettingsAction = self.createAction("&Settings", self.fileSettings,
 "Ctrl+O", "settings",
 "Konfokal settings")

 fileQuitAction = self.createAction("&Quit", self.close,
 "Ctrl+Q", "exit",
 "Close the application")

 self.fileMenuActions = (fileNewSessionAction, fileLoadSessionAction,
 fileSaveSessionAction, fileSaveAsSessionAction,
 fileExportAction, fileSettingsAction,
 fileQuitAction)

 self.connect(self.fileMenu, SIGNAL("aboutToShow()"),
 lambda args=(self.fileMenu,self.fileMenuActions):

Appendix 103

 self.updateMenu(args))

 # Create File Toolbar
 fileToolbar = self.addToolBar("File")
 self.addActions(fileToolbar, (fileNewSessionAction,
 fileLoadSessionAction,
 fileSaveSessionAction,
 fileExportAction,
 fileSettingsAction,
 fileQuitAction))

 # Create Edit actions and add them
 editUndoAction = self.createAction("&Undo", self.editUndo,
 "Ctrl+Z", "undo", "Undo")

 editRedoAction = self.createAction("&Redo", self.editRedo,
 "Ctrl+Y", "redo", "Redo")

 editManipulateAction = self.createAction("&Manipulate",
 self.editManipulate,
 "Ctrl+M", "manipulate",
 "Manipulate")

 self.editMenuActions = (editUndoAction, editRedoAction,
 editManipulateAction)

 self.connect(self.editMenu, SIGNAL("aboutToShow()"),
 lambda args=(self.editMenu,self.editMenuActions):
 self.updateMenu(args))

 # Create Edit Toolbar
 editToolbar = self.addToolBar("Edit")
 self.addActions(editToolbar, (editUndoAction, editRedoAction,
 editManipulateAction))

 # Create Scan actions and add them
 scanQuickScanAction = self.createAction("&Quick Scan", self.quickScan,
 "F5", "quickscan",
 "Perform Quick Scan")

 scanNewScanAction = self.createAction("&New Scan", self.newScan,
 "F6", "newscan",
 "Perform New Scan")

 self.scanMenuActions = (scanQuickScanAction, scanNewScanAction)

 self.connect(self.scanMenu, SIGNAL("aboutToShow()"),
 lambda args=(self.scanMenu,self.scanMenuActions):
 self.updateMenu(args))

 # Create Scan toolbar
 scanToolbar = self.addToolBar("Scan")

Appendix 104

 self.addActions(scanToolbar, (scanNewScanAction, scanQuickScanAction))

 # Add help menu options
 helpKonfokalAboutAction = self.createAction("&About Konfokal",
 self.helpKonfokalAboutAction)
 helpKonfokalAction = self.createAction("&Help", self.helpKonfokalAction)
 self.helpMenuActions = (helpKonfokalAboutAction, helpKonfokalAction)

 self.connect(self.helpMenu, SIGNAL("aboutToShow()"),
 lambda args=(self.helpMenu,self.helpMenuActions):
 self.updateMenu(args))

 # Navigator signals go here
 self.connect(self.navigatorWidget, SIGNAL("itemSelectionChanged()"),
 self.navigatorSlot)

 def navigatorSlot(self):

 selectedscan = self.navigatorWidget.selectedItems()[-1]
 selectedtext = selectedscan.text(0)

 try:
 # Try if selected item has parent, if so add it to list
 selectedparent = selectedscan.parent()

 # Set last items font to normal first
 if self.selecteditem:
 lastitem = self.selecteditem.pop()
 normalfont = QFont(lastitem.text(0))
 normalfont.setBold(False)
 lastitem.setFont(0, normalfont)

 # Set its text to bold, if selected
 boldfont = QFont(selectedparent.text(0))
 boldfont.setBold(True)
 selectedparent.setFont(0, boldfont)
 # Set others' text to default
 self.selecteditem.append(selectedparent)

 selectedParentText = str(selectedparent.text(0))

 self.refresh(int(selectedParentText.split()[-1])-1,
 str(selectedtext))

 except AttributeError, e:
 print e

 return

 def refresh(self, sessionno, scantitle):
 "Refreshes image and plot in MainWidget."
 for scans in self.sessionDict[sessionno].scanlist:

Appendix 105

 if scantitle == scans.data['TITLE']:
 # Check if image is available
 if scans.data['IMAGE'] is not core.ScanImage:

 # Check if datatypes are constructed for X
 if type(scans.data['X']) is not core.ScanData and \
 scans.data['X'] != 'N/A':
 # If not, parse the data from the XML and
 scans.data['X'] = core.ScanData('X',
 np.fromstring(scans.data['X'], sep=','))

 # Check if datatypes are constructed for Y
 if type(scans.data['Y']) is not core.ScanData and \
 scans.data['Y'] != 'N/A':
 # If not, parse the data from the XML and
 scans.data['Y'] = core.ScanData('Y',
 np.fromstring(scans.data['Y'], sep=','))

 # Check if datatypes are constructed for SENSOR
 if type(scans.data['SENSOR']) is not core.ScanData and \
 scans.data['SENSOR'] != 'N/A':
 # If not, parse the data from the XML and
 scans.data['SENSOR'] = core.ScanData('SENSOR',
 np.fromstring(scans.data['SENSOR'], sep=','))

 self.currentImage = scans.formImage()
 self.displayImagePlot(self.currentImage, scans.data['X'],
 scans.data['Y'], scans.data['SENSOR'])

 def helpKonfokalAction(self):
 pass

 def helpKonfokalAboutAction(self):
 pass

 # Action creation, addition, menu update functions
 def createAction(self, text, slot=None, shortcut=None, icon=None,
 tip=None, checkable=False, signal="triggered()"):
 action = QAction(text, self)
 if icon is not None:
 action.setIcon(QIcon(":/%s.png" % icon))
 if shortcut is not None:
 action.setShortcut(shortcut)
 if tip is not None:
 action.setToolTip(tip)

Appendix 106

 action.setStatusTip(tip)
 if slot is not None:
 self.connect(action, SIGNAL(signal), slot)
 if checkable:
 action.setCheckable(True)
 return action

 def addActions(self, target, actions):
 for action in actions:
 if action is None:
 target.addSeparator()
 else:
 target.addAction(action)

 def updateMenu(self, args):
 args[0].clear()
 self.addActions(args[0], args[1])

 # Cleanliness check of program
 def okToContinue(self):
 if self.dirty:
 reply = QMessageBox.question(self,
 "Konfokal - Unsaved Changes",
 "Save unsaved changes?",
 QMessageBox.Yes|QMessageBox.No|
 QMessageBox.Cancel)
 if reply == QMessageBox.Cancel:
 return False
 elif reply == QMessageBox.Yes:
 self.fileSaveSession()
 return True

 # File Menu slots
 def fileNewSession(self):
 if not self.okToContinue():
 return
 dialog = newsessiondlg.NewSessionDlg(self)
 if dialog.exec_():
 user = dialog.userLineEdit.text()
 datetimestr = str(dialog.dateLabel.text()).split()
 datetimestr = [datetimestr[1], datetimestr[3]]
 notes = dialog.notesPlainTextEdit.toPlainText()
 self.sessionDict[len(self.sessionDict)] = core.Session(user,
 datetimestr, 'teknofil_cdaq', notes)
 self.updateNavigator()

 def fileLoadSession(self):
 if not self.okToContinue():
 return
 directory = os.path.dirname(self.filename) \
 if self.filename is not None else "."
 formats = ["*.kff"]
 fname = str(QFileDialog.getOpenFileName(self,

Appendix 107

 "Konfokal - Choose Konfokal File", directory,
 "Konfokal File (%s)" % " ".join(formats)))

 if fname:
 self.sessionDict = utils.loadKFF(fname)
 # Set the working directory
 self.filename = fname
 self.directory = '/'.join(fname.split('/')[:-1])
 self.updateNavigator()

 def fileSaveSession(self):
 if self.filename:
 utils.saveKFF(str(self.filename), self.sessionDict)
 else:
 self.fileSaveAsSession()

 def fileSaveAsSession(self):
 fname = self.filename if self.filename is not None else "."
 formats = ["*.kff"]
 fname = str(QFileDialog.getSaveFileName(self,
 "Konfokal - Save File", fname,
 "Konfokal File (%s)" % " ".join(formats)))

 if fname:
 self.filename = fname
 utils.saveKFF(fname, self.sessionDict)

 def fileExport(self):
 pass

 def fileSettings(self):
 pass

 # Edit menu slots
 def editUndo(self):
 pass

 def editRedo(self):
 pass

 def editManipulate(self):
 pass

 # Scan menu slots
 def newScan(self):
 # set synthesize option
 synthesize = 1

 selecteditem = self.navigatorWidget.selectedItems()[0]
 if not selecteditem or selecteditem.parent():
 error = QErrorMessage()

Appendix 108

 error.showMessage("Please select a session!")
 error.setWindowTitle("Konfokal")
 error.exec_()
 return
 wzd = newscanwzd.NewScanWizard(self)
 if wzd.exec_():
 # Get the title
 scantitle = wzd.titleLineEdit.text()
 notes = str(wzd.scanTextEdit.toPlainText())
 selecteditem.addChild(QTreeWidgetItem([scantitle]))

 currentSession = self.sessionDict[int(str(selecteditem.text(0)
).strip()[-1])-1]

 # Create Scan object
 scan = core.Scan(str(scantitle), currentSession.sessionparams['device'])

 # Parse waveform
 if wzd.triangularRadioButton.isChecked():
 wzdWave = ['T']
 fallrate = []
 else:
 wzdWave = ['S']
 fallrate = str(wzd.fallrateHorizontalSlider.value())
 fallrate = "%3s" %fallrate
 fallrate = fallrate.replace(' ', '0')
 fallrate = [fallrate]

 # Get scan limits
 wzdLimits = [str(wzd.xFromLineEdit.text()), str(wzd.xToLineEdit.text()),
 str(wzd.xResolutionLineEdit.text()),
str(wzd.yFromLineEdit.text()),
 str(wzd.yToLineEdit.text()),
str(wzd.yResolutionLineEdit.text())]

 for index in range(len(wzdLimits)):
 wzdLimits[index] = '%5s' %wzdLimits[index]
 wzdLimits[index] = wzdLimits[index].replace(' ', '0')

 # Get DAC speed
 print str(wzd.dacHorizontalSlider.value())
 wzdDac_speed = str(wzd.dacHorizontalSlider.value() * 1000)
 wzdDac_speed = "%7s" %wzdDac_speed
 wzdDac_speed = wzdDac_speed.replace(' ', '0')
 wzdDac_speed = [wzdDac_speed]

 self.lastscan = (wzdWave, wzdLimits, wzdDac_speed)

 received = dev.sendScanStr(wzdWave, wzdLimits, wzdDac_speed, fallrate)

 X,Y,PMT = core.ScanData('X'), core.ScanData('Y'), core.ScanData('SENSOR')

Appendix 109

 for elem in range(len(received)):
 for lit in range(15):
 parsed = int(received[elem][(lit*4):4+(lit*4)])

 if lit%3 == 0:
 PMT.dataset = np.append(PMT.dataset, parsed)
 elif lit%3 == 1:
 X.dataset = np.append(X.dataset, parsed)
 elif lit%3 == 2:
 Y.dataset = np.append(Y.dataset, parsed)

 if synthesize:
 X.dataset, Y.dataset = utils.generateTriangular(int(wzdLimits[0]),
 int(wzdLimits[1]), int(wzdLimits[2]), int(wzdLimits[3]),
 int(wzdLimits[4]), int(wzdLimits[5]))

 X.dataset -= min(X.dataset)
 Y.dataset -= min(Y.dataset)
 PMT.dataset -= min(PMT.dataset)

 Xresolution = (int(wzdLimits[1]) - int(wzdLimits[0]))/int(wzdLimits[2])
 Yresolution = (int(wzdLimits[4]) - int(wzdLimits[3]))/int(wzdLimits[5])

 X.dataset *= Xresolution / float(max(X.dataset))
 Y.dataset *= Yresolution / float(max(Y.dataset))
 PMT.dataset *= 255. / 4096

 scan.saveData(X,Y,PMT)

 # Append it to sessionDict
 currentSession.scanlist.append(scan)

 def quickScan(self):
 if self.lastscan is not None:
 dev.sendScanStr(self.lastscan[0], self.lastscan[1],
 self.lastscan[2])
 else:
 print "No scan to perform."

 def updateNavigator(self):
 self.navigatorWidget.clear()
 for (num, session) in sorted(self.sessionDict.items()):
 sessionItem = QTreeWidgetItem(["Session " + str(num+1)])
 for item in session.scanlist:
 scanItem = sessionItem.addChildren([
 QTreeWidgetItem([item.data['TITLE']])])

Appendix 110

 print item
 self.navigatorWidget.addTopLevelItem(sessionItem)

 # Tab widget functions
 def displayImagePlot(self, img, x, y, pmt):
 #img = mpimg.imread(imgPIL)
 ax = self.image.add_subplot(111)
 ax.imshow(img)

 axplt = self.plot.add_subplot(3,1,1)
 axplt.title("X, Y, PMT")
 axplt.plot(x)
 axplt = self.plot.add_subplot(3,1,2)
 axplt.plot(y)
 axplt = self.plot.add_subplot(3,1,3)
 axplt.plot(pmt)

def main():
 app = QApplication(sys.argv)
 app.setWindowIcon(QIcon(":/konfokal.png"))
 form = MainWindow()
 form.show()
 app.exec_()

main()

Appendix 111

6.2. core.py

"""This module handles the image formation, storage and processing operations.
In order to create an image file, a Data() object should be provided.
"""
from __future__ import division

import PIL
import os
import matplotlib.pyplot as plt
import numpy as np
import datetime

class ScanData(object):
 """Contains the Data class for storing the scan data,
 manipulation functions which are used for handling: data
 generation, reformation, conversion, representation.
 """
 def __init__(self, datatype='N/A', dataset=np.array([])):
 """
 NAME
 Data()

 PARAMETERS
 Dataset: np.array
 Datatype: str
 Metadata: dict

 USAGEsa
 Creates a data class where datatype, dataset, datainverval and
 metadata(summary of data) is stored.
 """

 self.dataset = dataset
 self._datatype = datatype

 @property
 def datatype(self):
 return self._datatype

 @datatype.setter
 def datatype(self, value):
 self._datatype = value

 def synthesize(self, waveform, rep, wait, step, minimum=0, maximum=4096):
 """Generates data from [minimum, maximum) interval with step size of
 'step'. Used when creating synthetic position data.
 """

 length = wait*(step+1)
 self.dataset = np.zeros(rep*length)

 inc = int((maximum - minimum)/step)

Appendix 112

 for i in range(rep):
 for j in range(step+1):
 self.dataset[j*wait+i*length:j*wait+wait+i*length] \
 = int(j*inc + minimum)

 # Construct the decreasing part of triangular wave
 if waveform == 'tri':
 for i in range(1,rep,2):
 for j in range(0,step+1):
 self.dataset[j*wait+i*length:j*wait+wait+i*length] \
 = int(self.dataset.max() - j*inc)

 def display(self):
 import matplotlib.pyplot as plt
 plt.plot(self.dataset)
 plt.show()

class Session(object):
 """Session class holds single/multiple scans, that are
 taken by a single user. Creates new or loads/saves
 sessions.
 """

 def __init__(self, user, date_time, device, notes=''):

 # Gather session parameters under a dict
 self.sessionparams = {'user':str(user),
 'date_time':str(date_time), 'device':str(device),
 'notes':str(notes)}

 # Collect associated scans with this session
 self.scanlist = []

class Scan(object):
 """Scan object holds the data that belong to a session.
 Contains ScanData objects for forming a ScanImage object.
 Generates a scan report which holds all the necessary
 information about speed, or any kind of problems.
 """

 def __init__(self, title, device, elapsed='N/A', xdata='N/A',
 ydata='N/A', sensordata='N/A', img='N/A', notes='N/A'):

 self.data = {
 'TITLE' : title,
 'DEVICE' : device,
 'ELAPSED' : elapsed,
 'X' : xdata,
 'Y' : ydata,
 'SENSOR' : sensordata,
 'IMAGE' : img,

Appendix 113

 'NOTES' : notes
 }

 def saveData(self, xScanData, yScanData, sensorScanData):
 self.data['X'] = xScanData
 self.data['Y'] = yScanData
 self.data['SENSOR'] = sensorScanData

 def formImage(self):
 self.data['IMAGE'] = ScanImage(self.data['X'], self.data['Y'],
 self.data['SENSOR'])
 return self.data['IMAGE']

class ScanImage(object):
 """A delegating wrapper, which extends the PIL.Image class'
 properties while generating a scan image.
 """

 def __init__(self, xpos, ypos, sensor):

 # X, Y and Sensor data
 self._x = xpos
 self._y = ypos
 self._sensor = sensor
 self._imagearray = np.zeros((max(ypos.dataset)+1, max(xpos.dataset)+1))

 for i in range(len(self._x.dataset)):
 self._imagearray[self._y.dataset[i]][self._x.dataset[i]] \
 = self._sensor.dataset[i]

 self._image = PIL.Image.fromarray(self._imagearray).convert("RGB")

 def __getattr__(self, key):
 if key == '_image':
 raise AttributeError()
 return getattr(self._image, key)

 def showTicks(self, saveticks=0):
 """Creates and pops up the image of the given Data() object in
 matplotlib. May be used for analysis.
 """
 pltobj = plt.imshow(self._imagearray)

 if saveticks:
 return pltobj
 plt.show()

 def saveTicks(self, filename):
 """Saves the image with ticks on it."""
 pltobj = self.showTicks(saveticks=1)

Appendix 114

 plt.savefig(filename)

def testbench():

 xtxt = np.fromfile('x_data.txt')
 ytxt = np.fromfile('y_data.txt')
 pmttxt = np.fromfile('pmt_data.txt')
 xData = ScanData(dataset=xtxt)
 yData = ScanData(dataset=ytxt)
 pmtData = ScanData(dataset=pmttxt)
 session = Session('brn', '00:07', 'teknofil')
 session.createNewScan('nonotes', 'scan1')
 session.scanlist[0].saveData(xData, yData, pmtData)

 return session.scanlist[0].formImage()

#img = testbench()

Appendix 115

6.3. dev.py

Konfokal's dev file
import usb.util
import usb.core

def sendScanStr(waveform, ranges, dac_speed, damping=[]):
 """Sends scan string to TeknofilCDAQ.
 waveform: [WAVE=T,S or P] list,
 ranges: [XBEG, XEND, XRES, YBEG, YEND, YRES] list,
 dac_speed: SPEED
 """

 scanStr = waveform[0]

 # This is the string for performing scan
 for elem in ranges+dac_speed:
 if elem is not '':
 scanStr += str(elem) + ' '

 if damping:
 scanStr += damping[0]
 print damping

 print scanStr

 # Find Teknofil CDAQ
 device = usb.core.find()

 # Found?
 if device is None:
 raise ValueError('Teknofil CDAQ not found')

 # Set active configuration. With no arguments, the first
 # configuration will be the active one.
 device.set_configuration()

 device.write(0x01, scanStr)
 received = []

 while True:
 try:
 reading = device.read(0x81, 64)
 received.append(reading.tostring())
 except Exception,e:
 break

 return received

Appendix 116

6.4. utils.py

Utilities for Konfokal. Functions for getting-things-done.

import xml.etree.ElementTree as xee
from core import *
import zipfile, glob, os
import numpy as np

def formXML(sessiondict, xmlfname="kff.xml"):

 # Create the 'root' container-tag for sessions and settings
 root = xee.Element('root')

 # Create 'sessions' tag for adding sessions
 sessions = xee.SubElement(root, 'sessions')

 # Iterate and add all sessions
 xmldict = dict()
 for (num,session) in enumerate(sessiondict.values()):
 sessionstr = 'session' + str(num)
 xmldict[sessionstr] = xee.SubElement(sessions, sessionstr,
 session.sessionparams)

 if session.scanlist:
 scandict = dict()
 session_scanlist = sessionstr + '_scans'
 xmldict[session_scanlist] = scandict
 for (snum,scan) in enumerate(session.scanlist):
 scanstr = 'scan' + str(snum)
 xmldict[session_scanlist][scanstr] = xee.SubElement(
 xmldict[sessionstr], scanstr, scan.data)

 konfokalTree = xee.ElementTree(root)
 konfokalTree.write(xmlfname)

def parseXML(xmlfname="kff.xml"):
 "Parses given .kff XML file."
 xmlfile = xee.ElementTree(file=xmlfname)
 sessions = xmlfile.find('sessions')
 sessiondict = {}

 for (num,session) in enumerate(sessions.findall('*')):
 sessiondict[num] = Session(session.get('user'), \
 session.get('date_time'), session.get('device'), session.get('notes'))
 for scan in session.findall('*'):
 scanObj = Scan(scan.get('TITLE'), scan.get('DEVICE'),
 scan.get('ELAPSED'), scan.get('X'), scan.get('Y'),
 scan.get('SENSOR'), scan.get('IMAGE'), scan.get('NOTES'))
 sessiondict[num].scanlist.append(scanObj)

 return sessiondict

Appendix 117

def saveKFF(fname, sessiondict, xmlfname="kff.xml"):
 "Saves given .xml file as fname.kff"
 formXML(sessiondict)
 kffFile = zipfile.ZipFile(fname, "w")
 kffFile.write(xmlfname, os.path.basename(xmlfname), zipfile.ZIP_DEFLATED)
 os.remove(xmlfname)
 kffFile.close()

def loadKFF(fname, xmlfname="kff.xml"):
 kffFile = zipfile.ZipFile(fname, "r")
 xmlstr = kffFile.read(xmlfname, os.path.basename(xmlfname))
 element = xee.fromstring(xmlstr)
 etree = xee.ElementTree(element)
 etree.write(xmlfname)
 sessiondict = parseXML(xmlfname)
 os.remove(xmlfname)
 return sessiondict

def generateTriangular(xbeg, xend, xstep, ybeg, yend, ystep):
 "Generate a triangular waveform, return as np array."

 # initial conditions
 xwave = np.array([])
 ywave = np.array([])

 xnow = xbeg
 ynow = ybeg
 counter = 0

 while ynow <= yend:
 if counter % 2:
 # going up
 while xnow < xend:
 xwave = np.append(xwave, xnow)
 ywave = np.append(ywave, ynow)
 xnow += xstep

 else:
 # going down
 while xbeg < xnow:
 xwave = np.append(xwave, xnow)
 ywave = np.append(ywave, ynow)
 xnow -= xstep
 ynow += ystep
 counter += 1
 return xwave, ywave

def testbench():

 ses1 = Session('brn', 'tarih1', 'cdaq', 'notlar1')
 ses1.createNewScan('scan1', 'degisikscan')
 ses1.createNewScan('lol2', 'sds')

Appendix 118

 ses2 = Session('hodor', 'tarih2', 'teknofilCDAQ', 'not2')
 ses2.createNewScan('session2scan1', 'somenotes')

 sesdict = {0: ses1, 1:ses2}

 saveKFF('deneme', sesdict)

#testbench()

Bibliography 119

BIBLIOGRAPHY

[1] Davson, H. (1972). The physiology of the eye (3d ed.). New York: Academic Press.

[2] Rao, C. (2005). Data mining and data visualization. Amsterdam: Elsevier North Holland.

[3] Pedrotti, F., & Pedrotti, L. (1987). Introduction to optics. Englewood Cliffs, N.J.:

Prentice-Hall.

[4] Minsky, M. (1988). Memoir on inventing the confocal scanning microscope. Scanning,

128-138.

[5] Webb, R. (1996). Confocal optical microscopy. Rep. Prog. Phys. Reports on Progress in

Physics, 427-471.

[6] Xi, P., Rajwa, B., Jones, J., & Robinson, J. (n.d.). The design and construction of a cost-

efficient confocal laser scanning microscope. Am. J. Phys. American Journal of Physics, 203-

203.

[7] Cremer C., Cremer T. (1978). Considerations on a laser-scanning-microscope with high

resolution and depth of field, M1CROSCOPICA ACTA VOL. 81 NUMBER 1, 31—44.

[8] (n.d.). from

https://www.microscopyu.com/articles/confocal/images/pawley39stepsfigure1.jpg

[9] (n.d.). from

https://en.wikipedia.org/wiki/Photomultiplier#/media/File:PhotoMultiplierTubeAndScintillato

r.jpg

https://www.microscopyu.com/articles/confocal/images/pawley39stepsfigure1.jpg
https://en.wikipedia.org/wiki/Photomultiplier#/media/File:PhotoMultiplierTubeAndScintillator.jpg
https://en.wikipedia.org/wiki/Photomultiplier#/media/File:PhotoMultiplierTubeAndScintillator.jpg

Bibliography 120

[10] (n.d.). from

https://en.wikipedia.org/wiki/Photomultiplier#/media/File:PMT_Voltage_Divider.jpg

[11] (n.d.). from

http://www.camtech.com/index.php?option=com_content&view=article&id=92&Itemid=178

[12] (2012, January 24). Thor Labs Rev E PMM02 Amplified Photomultiplier User’s Guide.

[13] Nisarga, B. (2015, September 28). PWM DAC Using MSP430 High-Resolution Timer.

Retrieved from http://www.ti.com/lit/an/slaa497/slaa497.pdf

https://en.wikipedia.org/wiki/Photomultiplier#/media/File:PMT_Voltage_Divider.jpg
http://www.camtech.com/index.php?option=com_content&view=article&id=92&Itemid=178

Vita 121

VITA

 Baran Yalçın has received his B. Sc. degree in Electrical and Electronics Engineering

from College of Engineering, Koç University, İstanbul, Turkey. He later joined the M. Sc. in

Optoelectronics and Photonics Engineering program at Koç University, İstanbul, Turkey

under supervisory of Prof. Dr. Alper Kiraz. For his M. Sc. thesis he worked on

“Hardware/Software Design and Implementation of a Laser Scanning Confocal Microscope

Controller Using Open Design Approach”.

