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Abstract

Nonclassical Light Emission From Single Self-Assembled InAs Quantum Dots

by

Alper Kiraz

We describe quantum optical experiments using single self-assembled InAs quantum

dots in photonic nanostructures. Even though cryogenic temperatures are required

to observe their atom-like characteristics, absence of a trapping requirement renders

quantum dots very useful in a number of experiments previously not demonstrated

using atoms.

The inherit two-level nature of their single excitonic and biexcitonic transi-

tions allow the observation of photon antibunching under continuous wave excitation.

Under pulsed excitation conditions, the photon antibunching phenomenon gives rise

to triggered single photon emission, provided that free-carriers have much shorter life-

times than quantum dot ground state carriers. This new nonclassical light source,

i.e. single photon turnstile device, promises applications in quantum cryptography,

and quantum information processing.

We have observed weak coupling cavity quantum electrodynamics (cavity-

QED) regime by tuning the single excitonic transition into resonance with a high

quality factor microdisk whispering gallery mode. Such a coupling that resulted

in the enhancement of spontaneous emission rate by at least 3.4, can be used in

improving the collection efficiency of our single photon source.

Carrier-carrier interactions also bring additional richness to quantum dot

physics allowing the observation of a stable cascade system (biexciton - single ex-

citon cascade) and charged exciton phenomenon. We performed photon correlation

measurements that demonstrated the cascaded emission and gave evidence for the

viii



identification of charged emission peaks. Photons emitted by the biexciton - single

exciton cascade are also predicted to constitute a two-photon polarization entangled

state, similar to the case in atomic cascades. Under nonresonant excitation condi-

tions, we have not observed any polarization correlations; this is probably due to the

short spin lifetimes of ground state carriers.

Finally we propose an experimental scheme for observing two-photon in-

terference using the single quantum dot single photon source. Observation of two-

photon interference from our single photon source can lead to free space quantum

teleportation, and quantum information processing experiments. We demonstrate

the results of linewidth measurements under nonresonant continuous wave and pulsed

excitation conditions that revealed linewidths as small as 5.6 µeV . The fact that the

measured linewidths were ∼ 10 times larger than the transform limited values pre-

vented us from observing two-photon interference.
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Chapter 1

Introduction

For the last two decades quantum optical experiments have been performed

mostly using low density atomic beams [1] or trapped single ions [2, 3], revealing

various nonclassical phenomena. However due to the stringent experimental require-

ments in trapping single atoms or single ions, such experiments have not become

widely practical. With their atom-like characteristics, self-assembled InAs quantum

dots emerge as a material system that can be used in making various quantum op-

tical phenomena more practical. The biggest advantage in quantum dot research

is that due to their solid nature, no trapping technique is necessary in performing

experiments. Furthermore, as a result of the advanced semiconductor growth tech-

niques, our quantum dots can be grown at very low densities such that we can isolate

a single quantum dot within the optical resolution of a regular micro photolumines-

cence setup, without the need for special near-field or other techniques. Hence, at

cryogenic temperatures it is very convenient to investigate the atom-like properties

of single quantum dots.

The first experimental result we present in this thesis is the observation

of photon antibunching phenomenon in the emission of single InAs quantum dots.

This phenomenon is a proof of the two-level nature of the single excitonic transition.

As it is shown in Chapter 3, we observed almost ideal photon antibunching signa-
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CHAPTER 1. INTRODUCTION 2

tures which is very promising for further quantum optical experiments. In addition

to photon antibunching from the single ecitonic emission, we also observed photon

antibunching from the biexcitonic emission, this result is presented in Chapter 6.

We demonstrate the triggered single photon source operation from quan-

tum dots in Chapter 4. This is the demonstration of a new type of light source, i.e.

single photon turnstile device, that already received quite a lot of interest from the

community. We believe single photon sources will be stimulating for other quantum

optical results in the future. This result once more showed the clear advantage of

single quantum dots over single atoms. Although photon antibunching was observed

in 1977 [1] using single atoms, single photon operation has not been demonstrated

due to experimental difficulties until this year (2002 [4]). In contrast, photon an-

tibunching and triggered single photon source operation from single quantum dots

have been demonstrated with a small time separation in the year 2000 [5, 6].

Following these results, in Chapter 5 we show our results on cavity quan-

tum electrodynamics (cavity-QED) using single InAs quantum dots. In this regard,

quantum dots have the advantage that due to their semiconductor nature they can

be placed in semiconductor microcavities such as micropillar structures, microdisk,

or photonic band gap microcavities. With their low mode volumes and relatively

high mode quality factors these microcavities are the quantum dot counterparts of

the Fabry-Perot cavities used in atomic cavity-QED experiments. We demonstrate

an enhancement in the spontaneous emission rate of a single excitonic transition

of a single quantum dot by a factor of at least 3.4 due to its resonant coupling to

a microdisk whispering gallery mode. We also demonstrate that the emission of a

single quantum dot can be tuned in resonance with a cavity mode by changing the

temperature, providing a tuning range of ∼3 meV between 4 - 50 K. This weak cou-

pling cavity-QED regime is also important for single photon source operation from

single quantum dots. Light emitted from a single quantum dot can be efficiently

extracted by coupling it to a microcavity mode. Although microdisk cavities are not

suitable for such a purpose due to their non-directional output, our demonstrations
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of microcavity mode - quantum dot tunability constitutes a demonstration of the

principle.

In addition to the enhancement in the spontaneous emission rate of the

single excitonic emission resonantly coupled to a microdisk whispering gallery mode,

we observed inhibition in spontaneous emission when the emission peak is out of

resonance with any whispering gallery modes in a microdisk cavity. As explained

in Chapter 5 this is caused by the changed photonic environment that modifies

the available optical mode density, and zero point field fluctuations such that an

inhibition in spontaneous emission rate is observed. Both the small thickness (d ∼
λ) of the microdisk cavities, and the microdisk whispering gallery modes that the

quantum dot emission is out of resonance with, have a role in this combined effect.

We typically observed inhibition factors of 2 - 4 for different quantum dots located

in microdisk cavities.

Three-level nature of the ground state of single InAs quantum dots also

allow an experimental quantum optical analysis of a prototype three-level system.

From such an analysis, in Chapter 6 we demonstrate the cascaded emission of photons

in the ground state of a single quantum dot. This cascaded emission may also lead to

generation of polarization entangled photon pairs; however we have not observed this

effect, probably due to the short spin lifetimes of ground state carriers. From photon

correlation measurements we can clearly identify the single excitonic, and biexcitonic

emission peaks of a single quantum dot. Hence, this method is an alternative to the

conventional identification of the single excitonic and biexcitonic emission peaks by

their power and magnetic field dependent characteristics. In addition, this method

provides strong evidence for the identification of charged exciton peak in the single

quantum dot spectrum.

In Chapter 7 we present our proposal to obtain two-photon interference

using the single quantum dot single photon source. This proposal is motivated by

the use of our single photon source in free space quantum information processing in

a linear optics quantum computation scheme [7]. Our proposal relies on the interfer-
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ence of two consecutive photons emitted from the same quantum dot at the input of

a beam splitter. Since the first requirement to observe two-photon interference with

our proposal is to achieve transform limited emission, we performed linewidth mea-

surements on single excitonic transitions of single quantum dots. Under nonresonant

continuous wave and pulsed excitation conditions we obtained linewidths as small as

5.6 µeV . However, since these linewidth measurements were still > 10 times larger

than the spontaneous emission defined linewidths, we have not succeeded in observ-

ing the two-photon interference phenomenon. We discuss the excitation of a single

quantum dot from a higher excited state (p-shell) as a method to observe transform

limited single photon pulses.



Chapter 2

Self-Assembled InAs Quantum

Dots

Single self-assembled InAs quantum dots, also identified as artificial atoms,

have drawn a large amount of interest from the community, demonstrating an excit-

ing crossing point between semiconductor and atomic physics. By now it is widely

accepted that these nanostructures exhibit features in transport [8, 9] and optical

spectroscopy [10, 11, 12] that indicate full three dimensional confinement of carriers.

In this chapter it is aimed to give an introduction to the growth and ba-

sic optical characteristics of single InAs quantum dots before the discussion of the

quantum optical experiments in the following chapters. The processing steps of the

microdisk structures are also explained in this chapter as these structures serve as

both mesas and microcavities in our experiments. A detailed explanation of the

cavity properties of the microdisk structures is given later in Chapter 5.

2.1 Growth

Self-assmebled InAs quantum dots are grown by molecular beam epitaxy

(MBE) using the Stranski-Krastanov growth method [13]. As illustrated in Fig-

5



CHAPTER 2. SELF-ASSEMBLED INAS QUANTUM DOTS 6

InAs

MBE Film

Thickness

Film

Thickness

W.L.

QDs

Islands Quantum Dots

Figure 2.1: Schematic of the InAs quantum dot growth process.

ure 2.1, during the MBE growth, In and As atoms are first deposited on a clean

GaAs substrate held at high temperature where they self assemble into smooth epi-

taxial atomic layers. The layer by layer growth then continues until a build up in

the strain and surface energy of the epitaxial film switches the growth to the island

mode. This change in the surface morphology is dictated by the minimization of the

film energy. The growth of self-assembled quantum dots is finalized by covering the

smaller band gap material of the islands with a wider band gap epitaxial film. The

formation of a thin wetting layer is inherent to the process. While island formation is

initiated at a critical thickness of ∼ 1.6 monolayer (9.68 Å), at the end of the island

formation, wetting layer remains with a thickness of ∼ 1 monolayer (6.05 Å).

The quantum dots’ exact shape, dimensions and composition are not known

accurately. In our samples, size distribution of the quantum dots is controlled by

the partially covered island (PCI) technique [14, 15], in which, the growth sequence

during the capping of InAs islands is modified by introducing growth interruptions.

This technique reveals thinner, more elongated quantum dots that often have a ring-

like shape as shown in Figure 2.2. Typical dot dimensions are 100 nm base diameter

and 1-2 nm thickness in growth direction. Due to their smaller thicknesses, these
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µm µm

Figure 2.2: AFM picture of Quantum Dots

quantum dots emit at lower energies (1.25 - 1.3 eV) allowing the usage of Si based

detectors. We note that the ring shape of our quantum dots does not effect our

experiments as we do not apply magnetic fields [16]. The confinement energies for

both electrons and holes in these quantum dots are larger than 50 meV. Energy

separation between the ground and excited exciton (electron-hole) states typically

exceeds 20 meV [17]. A random in plane distribution of islands is observed on the

surface. The quantum dot density of our samples can be made constant at 1010 cm−2

or with a gradient in density from zero to 1010 cm−2 in the In flow direction. These

two different density profiles can be achieved by rotating or not rotating the wafer

during the MBE growth, respectively.

Layer structures of the samples investigated are shown in Figure 2.3. Both

bulk and microdisk samples are based on an AlAs/GaAs short-period superlattice

and a GaAs buffer layer for substrate smoothing. Quantum dots are embedded in

the center of a 200 nm thick GaAs layer in both samples. In microdisk sample there

is a 0.5 µm thick Al0.65Ga0.35As post layer underneath the GaAs capping layer.
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Substrate

50-100 nm GaAs

100 nm GaAs

100 nm GaAs

40x(2nm/1nm) AlAs/GaAs

(a)

100 nm GaAs

100 nm GaAs
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50-100 nm GaAs

40x(2nm/1nm) AlAs/GaAs

500 Al
0.65

Ga
0.35

Asnm

(b)

Figure 2.3: Layers of (a) bulk and (b) microdisk samples

2.2 Photoluminescence Characteristics

Photoluminescence measurements rely on laser excitation with a photon

energy larger than that of quantum dot transitions, and detection of the fluorescence

from various recombination channels. In addition to revealing emission energies of

specific recombination channels of a single quantum dot, this experiment allows for

the localization of the quantum dot within the optical resolution of the setup.

Our micro-photoluminescence setup is a low-temperature diffraction limited

scanning optical microscope in which spectral detection is done by a spectrometer and

a Charge Coupled Device (CCD) detector (Figure 2.4). The quantum dot samples

are mounted in a He-flow cryostat (Oxford Ins., Microstat) allowing for temperature

tuning from 4 - 300 K. The cryostat is moved by computer-controlled translation

stages having a minimum step size of 10 nm (Melles-Griot, Nanomover), due to

the vibrations induced from outside, our scanning resolution is ∼ 100 nm. The

sample is excited either with a continuous wave diode laser (operating at 785 nm),

a continuous wave Ti:Sa laser (Spectra-Physics 3900S, operating at 760 nm), or a

mode-locked Ti:Sa laser (Custom built system, 82 MHz, 250 fs, operating at 790 nm),

generating electron-hole pairs in the GaAs barrier layer which are subsequently cap-

tured by the quantum dots within a short timescale (< 35 ps) [18]. Excitation and
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BS

Microscope

objective

NA = 0.55

 LN 

CCDLaser Excitation

He flow Cryostat Spectrometer

Figure 2.4: Photoluminescence setup

collection are done through the same microscope objective (NA = 0.55) in normal

direction (diffraction limit: 1.7 µm). After filtering the scattered laser light and the

emission from the GaAs substrate and wetting layer, the collected luminescence is

dispersed by a 50 cm spectrometer (Acton Research Spectrapro-500i, spectral res-

olution: 70 µeV ) and detected by a Si CCD (Princeton Instruments Spex X 400B

Digital CCD) detector.

Figure 2.5(a) shows typical power dependent photoluminescence spectra

from a single InAs quantum dot located in a bulk sample under continuous wave

excitation taken at 4 K. The sharp peaks observed in that figure are indications

of the three dimensional carrier confinement [10, 11, 12] created by the bandgap

difference between the InAs quantum dot and the surrounding GaAs (Figure 2.5(b)).

At low pump powers, the single exciton emission dominates the spectrum, whereas

at higher pump powers, biexciton emission from the s-shell together with p-shell and

higher excited state emissions become dominant. Single exciton emission corresponds

to the recombination of an exciton in the ground state of the quantum dot in the

absence of another exciton; while biexciton emission is the recombination of a ground-

state exciton in the presence of another one. Due to carrier-carrier interactions, the

biexciton emission has an energy shift from the single exciton emission. In our
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Figure 2.5: (a) PL spectra of a quantum dot for various powers of the continuous
wave Ti:Sa laser at 760 nm. Single exciton transition, biexciton transition, s-Shell
transitions, and p-Shell transitions are visible. (b) Fundamental single quantum dot
transitions, marked band offsets are for room temperature (the drawing is not to
scale) .

samples this energy shift is ∼ 3.5 meV on the lower energy (red) side. This is

an extremely crucial property that is key for all the results achieved in following

chapters. This inherent anharmonicity in the excitonic energy levels allows for the

separate investigation of the single exciton and biexciton emissions by proper spectral

filtering. Another signature of biexciton emission is the quadratic dependence of its

intensity to pump power (Figure 2.5(a)).

The spectrum of a single quantum dot is in general extremely rich as de-

picted in Figure 2.5(a). This richness arises primarily from the fact that the con-

finement length-scale is much larger than the lattice spacing, giving rise to multi-
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Figure 2.6: The microdisk structure that consists of a 5 µm diameter disk and a 0.5
µm post. The GaAs disk area is 200 nm thick and contains InAs quantum dots.

electron-hole excitations that differ in energy from the fundamental one by only a

few meV. In Figure 2.5(a) charged exciton lines with small red or blue detuned

emission energies are also seen together with the single-exciton, biexciton, and p-

shell emissions. These several emission channels will be discussed in Chapter 6. At

low excitation powers all the emission lines in Figure 2.5(a) are narrow while they

broaden at higher excitation due to the interaction with free-carriers.

2.3 Microdisk Processing

Microdisk structures are processed using a two-step etching technique [19,

20]. We used photolithography in defining circles with diameters ranging from 1.5 to

6 µm. Cylindrical microdisk layers are then etched using a HBr-based wet etchant.

Etched regions are masked by either 1 µm thick photoresist or 50 nm thick Ti. The

HBr-based etch solution produces isotropic etching, with the disk diameter reduced

(lateral etching) during the vertical etch into the material. The etchant is also

optimized to reveal minimal surface roughness at the end of vertical etching. After

delineation of the microdisk feature, the pedestal layer is defined by etching in a

dilute HF solution, which has a high selectivity in etching AlGaAs with high Al
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content in preference to GaAs. Scanning electron micrographs reveal the top disk

layer to have a smooth, nonfaceted surface with an almost vertical etched profile

(Figure 2.6). Since the Q-values of microdisk whispering modes are limited by surface

roughness, minimum surface roughness is a very stringent requirement for cavity-

QED experiments (Chapter 5).



Chapter 3

Photon Antibunching

Under continuous wave excitation, a two-level emitter emits photons one-

by-one. After a photon is emitted, the system is necessarily in the radiatively inac-

tive ground state and a second photon cannot be emitted immediately after the first

one. The emission probability recovers its mean value only after the excited-state

occupancy reaches the steady-state population, determined by the excitation and

relaxation rates. Hence photons emitted from a single two-level emitter are anti-

bunched, this is the essence of the photon antibunching phenomenon. As we discuss

in this chapter, this phenomenon requires a quantum mechanical analysis, it cannot

be explained by classical wave description of light.

The first prediction of this phenomenon dates to 1976 [21] with the first

experimental demonstration in 1977 [1] using single Na atoms. Since then, photon

antibunching has been observed in various different systems: a single stored Mg+

ion (1987 [3]), a single pentacene molecule (1992 [22]), a single terrylene molecule

(2000 [23]), a single chemically synthesized CdSe quantum dot (2000 [5]), a single

nitrogen-vacancy center in diamond (2000 [24, 25]). The underlying two-level struc-

ture of single InAs quantum dots also gives rise to photon antibunching (2000 [26, 6],

2001 [27]) as presented in this chapter.

In this chapter we first introduce the second order photon correlation func-

13
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tion. Thereafter we analyze the photon antibunching phenomenon by solving the

second order photon correlation function for both an ideal two-level system and a

single quantum dot, and then we present our experimental results.

3.1 Degree of Second Order Coherence

Coherence properties of a light source can be fully analyzed by measuring

all of its coherence functions. The general nth degree coherence function is given

as [28]:

g(n)(r1t1, ...rntn; rn+1tn+1, ...r2nt2n)

=
〈Ê−(r1t1)...Ê−(rntn)Ê+(r2nt2n)...Ê

+rn+1(tn+1)〉
〈Ê(−)(r1t1)Ê(+)(r1t1)〉...〈Ê(−)(r2nt2n)Ê(+)(r2nt2n)〉

1/2
(3.1.1)

where we use the quantized electromagnetic field defined as [29]:

Ê(r, t) =
∫

Êk(r, t)dk,

Êk(r, t) = Ê+
k
(r, t) + Ê−

k
(r, t) = i

√
h̄ωk

2ε0V
εk
(
âke

−iωkt+ik·r − â†
k
eiωkt−ik·r

) (3.1.2)

εk, âk, and â†
k
denote the field polarization vector, single mode photon annihila-

tion, and creation operators respectively. Among the coherence functions in Equa-

tion 3.1.1, the first and second orders are commonly measured in laboratory. ”Young’s

Double Slit Experiment” and ”Hanbury Brown and Twiss Experiment” are the most

characteristic experiments in determining the first and second order coherence func-

tions respectively.

Assuming no dependence on rn, the first order coherence function, which

measures the correlations of the field amplitude, can be written as:

g(1)(τ) =
〈Ê−(t+ τ)Ê+(t)〉
〈Ê(−)(t)Ê(+)(t)〉

(3.1.3)

which reduces to:

g(1)(τ) =
〈â†

k
(t+ τ)âk(t)〉
〈â†

k
(t)âk(t)〉

(3.1.4)
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for a single mode field. âk(t) = e−iωktâk, and â
†
k
(t) = eiωktâ†

k
are single mode photon

annihilation and creation operators in the Heisenberg picture. We will not analyze

the general properties of g(1)(τ) for different light sources, such an analysis can be

found in Ref. [28]. However it is important to note that various different light sources

can reveal the same first order coherence function. Moreover, nonclassical nature of

different light sources is also non-visible in the first order coherence function for most

cases. For instance a classical single-mode light source (single mode thermal state, or

a coherent state), and a single photon Fock state both have their first order coherence

functions equal to eiωτ .

Differences between classical and nonclassical light sources are most conve-

niently revealed by the second order coherence function measurements. Considering

the quantized electromagnetic field, and assuming no dependence on rn, the second

order coherence function is:

g(2)(τ) =
〈E−(t)E−(t+ τ)E+(t+ τ)E+(t)〉

〈E−(t)E+(t)〉2

=
〈: Î(t+ τ)Î(t) :〉

〈Î(t)〉2
(3.1.5)

:: denotes the normal ordering of the field amplitudes. For a single mode field

Equation 3.1.5 can be further simplified to:

g(2)(τ) =
〈â†

k
(t)â†

k
(t+ τ)âk(t+ τ)âk(t)〉
〈â†

k
(t)âk(t)〉

2 (3.1.6)

For a classical electromagnetic field:

E(r, t) =

∫
Ek(r, t)dk, Ek(r, t) = E∗ke

−iωkt+ik·r + Eke
iωkt−ik·r (3.1.7)

The fluctuations in the field intensity are given by the following distribution function:

g
(2)
classical(τ) =

〈E(t)E(t+ τ)E∗(t+ τ)E∗(t)〉
〈E(t)E∗(t)〉2

=
〈I(t+ τ)I(t)〉
〈I(t)〉2

(3.1.8)
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I(t) corresponds to the average field intensity measured at time t. Classical second

order coherence function (g
(2)
classical(τ)) can be different from the quantum mechanical

second order coherence function (g(2)(τ)) since 〈: Î(t + τ)Î(t) :〉 is not necessarily

equal to 〈I(t+ τ)I(t)〉 for all light sources.
Some observations can be made on the value of g

(2)
classical(τ). For τ = 0:

g
(2)
classical(0) =

〈I(t)2〉
〈I(t)〉2

(3.1.9)

Considering the random process I(t), if we assume that different intensity measure-

ments at different times are independent from each other, and identical to each other,

Cauchy’s inequality:

2I(t1)I(t2) ≤ I(t1)2 + I(t2)
2 (3.1.10)

can be used to derive the inequality [28]:

(
I(t1) + I(t2) + ...+ I(tN )

N

)2

≤ I(t1)
2 + I(t2)

2 + ...+ I(tN )2

N
(3.1.11)

Using ergodicity due to the independence of I(ti):

〈I(t)〉 = I(t1) + I(t2) + ...+ I(tN )

N
(3.1.12)

〈I(t)2〉 = I(t1)
2 + I(t2)

2 + ...+ I(tN )2

N
(3.1.13)

Equations 3.1.11, 3.1.12, and 3.1.13 reveal:

〈I(t)〉2 ≤ 〈I(t)2〉 ⇒ g
(2)
classical(0) ≥ 1 (3.1.14)

Hence, classical second order coherence function at zero time delay can have the

values in the range:

1 ≤ g(2)classical(0) <∞ (3.1.15)
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Another important inequality can also be derived for g
(2)
classical(τ) at a gen-

eral delay time τ . Again starting from Cauchy’s inequality in Equation 3.1.10, the

following inequality can be derived:

(I(t1)I(t1 + τ) + ...+ I(tN )I(tN + τ))2

≤
(
I(t1)

2 + ...+ I(tN )2
) (
I(t1 + τ)2 + ...+ I(tN + τ)2

)
(3.1.16)

Using the ergodicity property, and independent identical random processes, Equa-

tion 3.1.16 reduces to:

〈I(t)I(t+ τ)〉 ≤ 〈I(t)I(t)2〉 ⇒ g(2)(τ) ≤ g(2)(0) (3.1.17)

From Equations 3.1.15, and 3.1.17 we can deduce the range for g(2)(τ) as:

1 ≤ g(2)classical(τ) <∞ (3.1.18)

Now we would like to analyze the second order coherence functions of a

coherent state, and an n-photon Fock state, to highlight the main points relevant for

our work.

Coherent state: Coherent state is defined as the eigenfunction of the photon annihi-

lation operator:

âk|αk〉 = α|αk〉

g(2)(τ) =
〈αk|â†k(t)â

†
k
(t+ τ)âk(t+ τ)âk(t)|αk〉

〈αk|â†k(t)âk(t)|αk〉
2 =

|α|4
|α|4 = 1

This result can also be also obtained by taking the coherent state as a classical single

mode electric field state defined in Equation 3.1.7, and calculating the second order

coherence function using Equation 3.1.8.

n photon Fock state: For an n photon Fock state Equation 3.1.6 can be used to obtain:

g(2)(τ) =
〈nk|â†k(t)â

†
k
(t+ τ)âk(t+ τ)âk(t)|nk〉

〈nk|â†k(t)âk(t)|nk〉
2

=





n−1
n ;n > 0

0 ;n = 0
(3.1.19)
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Equation 3.1.19 implies g(2)(τ) < 1 for all Fock states. This result which is due to

the nonclassical nature of the photon number states is contradictory with the range

given in Equation 3.1.18 for a classical light source. Hence g(2)(0) < 1 is a clear

indication of nonclassical light emission. This is indeed the definition of the photon

antibunching phenomenon:

0 ≤ g(2)(0) < 1 (3.1.20)

defines a photon antibunched light source in general. As seen in the Equation 3.1.19,

among the n photon Fock states, the single photon Fock state has the strongest

nonclassicality as g(2)(τ) = 0 for that state.

At this stage it is also relevant to analyze the photon antibunching from

multi identical single photon Fock state emitters. As it was calculated in Equa-

tion 3.1.19, for an ideal single photon Fock state generator; g(2)(0) = 0. Consider N

identical independent such sources whose second order coherence function is g(2)(τ).

The second order coherence function for the collective emission can then be calculated

by substituting the intensity operator below into Equation 3.1.5:

Î(t) = Î1(t) + ...+ ÎN (t)

revealing the following equation:

g
(2)
N (τ) =

Ng(2)(τ) + {〈(I1(t+ τ) + ...+ IN (t+ τ))〉2 − {〈I1(t)〉2 + ...+ 〈IN (t)〉2}}
〈(I1(t+ τ) + ...+ IN (t+ τ))〉2

= 1 + (g(2)(τ)− 1)
〈I1(t)〉2 + ...+ 〈IN (t)〉2

〈(I1(t+ τ) + ...+ IN (t+ τ))〉2

=
N − 1 + g(2)(τ)

N
(3.1.21)

Hence for N ideal single photon Fock state generators:

g
(0)
N (τ) = 1− 1

N
(3.1.22)

This equality has a rather important practical significance: It allows the usage of

photon antibunching experiments to identify single two-level emitters. If the emission
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is not due to a single emitter, g
(2)
N (0) > 0.5. Hence, g

(2)
N (0) = 0.5 can be regarded as

an experimental boundary to separate a single two-level emitter from multiple ones.

3.2 Photon Antibunching in Resonance Fluorescence of

a Two-Level System

In this section we analyze photon antibunching in the emission of a single

two-level emitter. This analysis is in direct relevance to the case of single quantum

dots as we will see in the next sections. We will hereafter call the second order

coherence function as the second order photon correlation function in the text.

In experimental terms, the second order photon correlation function (g(2)(τ))

corresponds to the relative detection probability of a photon at time τ given that

another photon detection has occurred at time 0. Its expression in terms of the field

components is given in Equation 3.1.5 and repeated below for convenience:

g(2)(τ) =
〈E(−)(t)E(−)(t+ τ)E(+)(t+ τ)E(+)(t)〉

〈E(−)(t)E(+)(t)〉2
(3.2.1)

For a two-level emitter, the field components can be expressed in terms of the two-

level emitter operators, assuming the far-field, this source-field expression [28] is

given as:

Ê(+)(rt) = −eω
2
0|µeg|sinα
4πε0c2|r|

iσ̂ge(t−
|r|
c
) (3.2.2)

where σ̂ge = |g〉〈e| and σ̂eg = |e〉〈g| are the two-level emitter projection operators,

and µeg, α, and i, are the dipole matrix element, angle between the vectors µeg-r, and

unit vector in transverse direction, respectively. Using Equation 3.2.2, Equation 3.2.1

can be expressed in terms of the atomic operators as:

g(2)(τ) =
〈σ̂eg(t)σ̂eg(t+ τ)σ̂ge(t+ τ)σ̂ge(t)〉

〈σ̂eg(t)σ̂ge(t)〉2
=
〈σ̂eg(t)σ̂ee(t+ τ)σ̂ge(t)〉

〈σ̂ee(t)〉2
(3.2.3)

Appendix A contains the detailed study of the second order photon correla-

tion function for a general two-level emitter depicted in Figure 3.1, under continuous
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Figure 3.1: Laser driven two-level emitter

wave resonant excitation conditions, considering spontaneous emission and other co-

herence dephasing mechanisms. In this section however, a two-level emitter that

has fast coherence dephasing mechanisms (strongly damped coherences) is analyzed

only, as it is relevant to single quantum dots under nonresonant excitation conditions

(Chapter 7).

Assuming strongly damped coherences, the two-level emitter in Figure 3.1

can be analyzed in the rate equation limit:

d

dt


 〈σ̂ee(t)〉
〈σ̂gg(t)〉


 =


 −Γspon −Wp Wp

Γspon +Wp −Wp




 〈σ̂ee(t)〉
〈σ̂gg(t)〉


 (3.2.4)

Using Equation 3.2.4 and quantum regression theorem (Appendix A), the unnormal-

ized second order correlation function G(2)(τ) = 〈σ̂eg(t′)σ̂ee(t′ + τ)σ̂ge(t
′)〉 = Gee(τ)

can be found by the solution of the following set of differential equations and initial

conditions:

d

dτ


 G

(2)
ee (τ)

G
(2)
gg (τ)


=


 −Γspon −Wp Wp

Γspon +Wp −Wp




 G

(2)
ee (τ)

G
(2)
gg (τ)


 (3.2.5)

G(2)
ee (τ = 0) = 0

G(2)
gg (τ = 0) = 〈σ̂ee(t′)〉
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satisfying the closed system relationship:

〈σ̂ee(t)〉+ 〈σ̂gg(t)〉 = 1⇒ G(2)
ee (τ) +G(2)

gg (τ) = 〈σ̂ee(t′)〉.

In the above set of equations, substituting 〈σ̂ee(t′)〉 by its steady-state value
Wp/2

Γspon+Wp
,

an analytical solution for the normalized second order correlation function can be

obtained:

g(2)(τ) = 1− e−(Γspon+Wp)τ (3.2.6)

Equation 3.2.6 at two pump powers is depicted in Figure 3.2. In that figure, the

principal signature of photon antibunching is the dip at τ = 0, which corresponds

to vanishing probability of simultaneous emission of more than one photons from

the two-level emitter. The effect of spontaneous emission and pumping rate causes

the second order photon correlation function to reach the value 1 for large τ . The

transition time from g(2) = 0 to g(2) = 1 is given by 1/(Γ+Wp) which is the recovery

time of the excited state population of the two-level emitter (Appendix A). The level

g(2) = 1 corresponds to Poissonian photon statistics indicating that photons emitted

by a time separation much larger than 1/(Γ+Wp) are independent from each other.

3.3 Modelling a Single Quantum Dot as a Three-Level

System

Resonance fluorescence analyzed in the previous section is experimentally

achievable using atoms [1]. The gaseous state of atoms hardly causes any stray light

due to the laser. Hence it is possible to separate the atomic fluorescence from the

excitation laser beam simply by properly locating the detector. However in the reso-

nance fluorescence experiments using quantum dots, the solid nature of the samples

cause a large amount of stray laser light, making separate detection of quantum dot

fluorescence very hard. To solve this problem, it is possible to pump the quantum
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Figure 3.2: Photon antibunching in resonance fluorescence of a strongly damped
two-level emitter

dot indirectly through fast relaxing upper energy levels. For non-resonant pump-

ing, these higher energy states are the wetting layer or substrate energy levels that

are known to have fast relaxation times (< 35 ps, [18]). As we demonstrate in this

section, provided that the relaxation rates of these states are much larger than the

other rates (pumping rates, other relaxation rates) in the consideration, these states

can be ignored for the purposes of the rate equation analysis.

As it was demonstrated in Figure 2.5(a), under nonresonant excitation con-

ditions the number of excitons in our single InAs quantum dots increase in a ladder

structure, first s-shell is filled then p-shell etc... Hence, for low excitation experi-

ments, consideration of only s-shell is enough for modelling a single quantum dot.

This was the case for all of our experiments. Under these low excitation conditions,

a level diagram as in Figure 3.3(a) can be drawn for a single quantum dot. In Fig-

ure 3.3(a) levels |0〉, |X〉, and |XX〉 correspond to zero, single, and two excitonic

energy levels, while |1〉, and |2〉 correspond to fast relaxing pumping levels that pump

levels |X〉, and |XX〉 respectively. We have placed a stimulated emission term be-

tween levels |1〉, and |0〉 for completeness. As it will be seen in the following analysis

this term does not have a significance under the assumption ΓpX À WpX . There

is no stimulated emission term between levels |2〉, and |X〉 as there is not a second
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Figure 3.3: (a) A realistic rate equation model of a single quantum dot under low
nonresonant excitation conditions. (b) Reduced equivalent three-level model.

laser field that is actually causing the pumping from level |X〉 to |2〉. We also did

not include the spontaneous recombination between levels |1〉 and |0〉 assuming that

this a slower process than ΓpX . Using the pumping rates shown in the figure, the

following rate equations can be written for levels |1〉, and |2〉:

d〈σ̂2(t)〉
dt =WpXX〈σ̂X(t)〉 − ΓpXX〈σ̂2(t)〉

d〈σ̂1(t)〉
dt =WpX〈σ̂0(t)〉 − (WpX + ΓpX)〈σ̂1(t)〉

(3.3.1)

Under the fast relaxation condition:

{ΓpX ,ΓpXX} >> {WpX ,WpXX ,ΓX ,ΓXX} (3.3.2)

levels |1〉, and |2〉 reach their steady-states much faster than the other levels, hence

〈σ̂1〉, and 〈σ̂2〉 can be replaced by their steady state values in the time scales relevant

to 〈σ̂0〉, 〈σ̂X〉, and 〈σ̂XX〉:

d〈σ̂2(t)〉
dt

≈ 0 ⇒ 〈σ̂2(t)〉 ≈ 〈σ̂2s,s〉 =
WpXX

ΓpXX
〈σ̂X(t)〉

d〈σ̂1(t)〉
dt

≈ 0 ⇒ 〈σ̂1(t)〉 ≈ 〈σ̂1s,s〉 =
WpX

WpX + ΓpX
〈σ̂0(t)〉
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Revealing the following rate equations for levels |0〉, |X〉, and |XX〉:

d

dt




〈σ̂XX(t)〉
〈σ̂X(t)〉
〈σ̂0(t)〉


 =




−ΓXX WpXX 0

ΓXX −(ΓX +WpXX)
WpXΓpX
WpX+ΓpX

0 ΓX −WpX

(
1− WpX

WpX+ΓpX

)







〈σ̂XX(t)〉
〈σ̂X(t)〉
〈σ̂0(t)〉




Using the assumption in 3.3.2, the above set of equations reduces to:

d

dt




〈σ̂XX(t)〉
〈σ̂X(t)〉
〈σ̂0(t)〉


 =




−ΓXX WpXX 0

ΓXX −(ΓX +WpXX) WpX

0 ΓX −WpX







〈σ̂XX(t)〉
〈σ̂X(t)〉
〈σ̂0(t)〉


 (3.3.3)

Note that Equation 3.3.3 is the rate equation describing the system depicted in Fig-

ure 3.3(b). Hence, under low nonresonant excitation conditions, in the rate equation

limit where all lines are assumed to be highly dephased, the fast relaxing pumping

levels can be ignored, and the quantum dot can be modelled as a three-level system.

3.4 Analysis of Photon Antibunching in a Single Quan-

tum Dot

In this section quantum dot antibunching properties are investigated using

the three-level model (Figure 3.3(b)) in the rate equation limit. As it was explained

in the previous sections the reason to use this model for a single quantum dot is three-

fold: (i) firstly, all of our experiments are done in the low pumping regime where

average number of excitons in the quantum dot is less than two, (ii) secondly, the

nonresonantly excited states used in our experiments (wetting layer states, and GaAs

substrate states) have large relaxation rates (< 35 ps, [18]) enabling us to ignore the

effect of these higher energy levels in the analysis, and (iii) thirdly, as it will be

shown in Chapter 7, under nonresonant excitation conditions, dephasing processes

in a quantum dot are much faster than the relevant excitation Rabi frequencies

validating the rate equation treatment. Under these assumptions, following the steps

in Section 3.2, starting from the three-level rate equations, and using the quantum

regression theorem, the following equations are obtained for two-time correlation
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functions:

d

dτ




G
(2)
XX,XX(τ)

G
(2)
X,X(τ)

G
(2)
0,0(τ)


=




0 WpXX −ΓXX

WpX −(WpXX + ΓX) ΓXX

−WpX ΓX 0







G
(2)
XX,XX(τ)

G
(2)
X,X(τ)

G
(2)
0,0(τ)


 (3.4.1)

for the initial conditions:

G
(2)
XX(τ = 0) = 0

G
(2)
X (τ = 0) = 0

G
(2)
0 (τ = 0) = 〈σ̂X,X(t′)〉

where

G
(2)
0,0(τ) = 〈σ̂X,0(t′)σ̂0,0(t′ + τ)σ̂0,X(t′)〉

G
(2)
X,X(τ) = 〈σ̂X,0(t′)σ̂X,X(t′ + τ)σ̂0,X(t′)〉

G
(2)
XX,XX(τ) = 〈σ̂X,0(t′)σ̂XX,XX(t′ + τ)σ̂0,X(t′)〉

G
(2)
X,X(τ) corresponds to the unnormalized second order photon correlation function

G(2)(τ).

Exemplary solutions of G
(2)
X,X(τ) for four different pumping intensities are

shown in Figure 3.4. In these calculations ΓXX = 2ΓX , and WpXX = 2WpX are

assumed. These are approximately relevant ratios as it becomes clear later in this

chapter, and Chapter 6. There are several points to note in Figure 3.4. The decay

time observed in g(2)(τ) is in general determined by WpX , WpXX , ΓX , and ΓXX

in a nontrivial manner preserving a tendency similar to a two-level system at low-

excitation regime. Hence, in low-excitation regime ({WpX ,WpXX} << {ΓX ,ΓXX})
the decay time is approximately equal to the spontaneous emission time (1/ΓX),

while at higher excitation powers when the two-excitonic level is still not populated,

it is determined by 1/(ΓX +WpX).

At high excitation regime, the second order photon correlation function

starts showing a bump near τ = 0 (Wp = 3ΓX in Figure 3.4). This is a behavior
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Figure 3.4: Calculated g(2)(τ) for the three-level model at different pump powers,
assuming ΓXX = 2ΓX , and WpXX = 2WpX .

special to a three-level system that does not apply to a two-level system [30]. When

the system is highly excited, the average probability of photon emission from the

single excitonic to ground state is very low, photon emission events are mostly oc-

curring between the two excitonic and single excitonic states. Whereas at τ = 0, in

the second order correlation function, it is known that the system is in the ground

state. During the recovery process, first the single excitonic state is filled making the

photon emission probability between the single excitonic and ground states higher

than its steady state value, causing the bump in g(2)(τ).

3.5 Experiments

3.5.1 Hanbury Brown and Twiss Setup

Measurement of the second order photon correlation function requires co-

incidence detection where photon pairs with a certain time delay between them are
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Figure 3.5: Hanbury Brown and Twiss Setup

detected. Coincidence detection is in principle possible with a single ideal detector

that can perform one photon as well as two photon detections at all times; such

a detector is technologically not available. Instead, two detectors and a 50%/50%

beam splitter, i.e. Hanbury Brown and Twiss setup [31], can be used in coincidence

detection. This measurement method is currently the only method used in second

order photon correlation experiments. As we will see in this section, it is a very

convenient measurement technique because it is not effected by the optical losses

between the emitter and detector.

In the second order photon correlation experiments we filter specific transi-

tions in the single quantum dot photoluminescence (single exciton emission, biexciton

emission) and send them to our Hanbury Brown and Twiss (HBT) setup. Spectrom-

eter or interference filters (1 nm or 0.5 nm FWHM, custom manufactured by Omega

Optical Inc., Brattleboro, VT) combined with color filters are used in spectral fil-

tering. The Hanbury Brown and Twiss setup (Figure 3.5) consists of a 50%/50%

beam splitter and two single-photon-counting avalanche photodiodes (APD, Perkin

Elmer model SPCM-AQR-14, timing resolution: 300 ps). The APDs are connected

to the start and stop inputs of a time to amplitude converter (TAC, ORTEC Model

567) whose output is sent to a multichannel analyzer (MCA, ORTEC MicroACE).

An electronic delay (ORTEC Model 425A) is introduced into the stop channel. The

TAC detects coincidences corresponding to photon detection events in both APDs,
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and converts the time delay between the two detection events into a voltage. Coin-

cidence events with a time separation smaller than a certain maximum value (50 ns

or 100 ns in our experiments) are only considered. Each output pulse of the TAC

is then used to increment the value stored in one channel of the MCA, the MCA is

selected to contain 512 channels in our experiments. By this way, after detection of

sufficient number of coincidences, the MCA reveals the distribution of the number of

coincidences n(τ) with respect to arrival time separation τ = tstart− tstop. The elec-

tronic delay introduced into the stop channel is used to check the symmetry around

τ = 0.

The measured distribution n(τ) is equivalent to the unnormalized correla-

tion function G(2)(τ) in the limit where the reciprocal of the average counting rate

is much larger than the measured time separation (τ) between photon pairs. This

requirement can be explained by calculating the coincidence detection probability in

our HBT setup. Consider the total collection and detection efficiency of the start

and stop APDs to be equal to ηstart, and ηstop respectively. The total number of

detected coincidences during a counting time T (G
(2)
T (τ)) is given as:

G
(2)
T (τ) = (1− ηstopΓX∆τ)τ/∆τ ηstopΓX∆τ

∫ T

0
ηstartΓXdt〈σ̂X0(t)σ̂XX(t+ τ)σ̂0X(t)〉

Since ∆τ << ηstopΓX (∆τ = 100 − 200 ps, ηstopΓX ∼ 10 − 100µs) for our case, the

equality:

lim
dt→0

(1− ηstopΓX∆τ)τ/∆τ = e−ηstopΓXτ (3.5.1)

can be written. Using the above equality and Equation 3.2.3, the number of detected

coincidences in channel τ after a total integration time of T can be written as:

G
(2)
T (τ) =

∫ T

0
dtηstartηstopΓ

2
X∆τe−ηstopΓXτ 〈σ̂XX(t)〉2g(2)(τ) (3.5.2)

Thus, G
(2)
T (τ) found in Equation 3.5.2 corresponds to the unnormalized second order
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photon correlation function G(2)(τ) under the condition:

ηstopΓXτ ¿ 1 (3.5.3)

This condition was always satisfied in our measurements (ηstopΓX ∼ 10 − 100 µs,

and τ < 50 ns or τ < 100 ns).

The total detection efficiency of our HBT setup, including the extraction

efficiency from the material, the collection efficiency of the microscope objective, the

transmission of optics and spectral filters, and the quantum efficiency of the APDs,

is estimated to be 5×10−5 when the spectrometer is used as the spectral filter and

0.1% when interference filters are used. We note that the requirement ηstopΓXτ ¿ 1

is not inherent in the HBT experiments, it is caused by our choice of using a TAC

combined with a MCA in coincidence detection. This requirement can be easily

removed by recording the photon streams in both APDs for large amount of times

using proper electronics.

Finally, the time resolution of our HBT setup is 420 ps. Considering each

APD’s photon detection time is determined by a random process having Gaussian

distribution, the probability distribution of joint detection of two photons at each

APD will be given by the convolution of the two Gaussians. As each APD features a

timing resolution of 300 ps, the resulting joint detection probability distribution has

a FWHM of
√
2 · 300 ps = 420 ps.

3.5.2 Photon Antibunching in Single InAs Quantum Dots

In this section we present our experimental results on photon antibunching

from single excitonic transitions of three different quantum dots. The first quantum

dot is located in a bulk sample whose layer diagram is illustrated in Figure 2.3(a),

the second quantum dot is located in a microdisk cavity of a microdisk sample

(Figure 2.3(b)), and the third quantum dot is located in the bulk region of a microdisk

sample (Figure 2.3(b)).
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Figure 3.6: (a) Measured distribution of coincidence counts n(τ) and fit of the cor-
relation function g(2)(τ) (solid line) for a single bulk quantum dot, obtained at two
different pump intensities: 66 Wcm−2 (Trace (i)) and 252 Wcm−2 (Trace (ii)). Trace
(iii) shows the coincidence counts for many quantum dots in a high density region
of the same sample. Single APD count rates are: Ni=13000 Hz, Nii=14500 Hz,
and Niii=15000 Hz for traces (i), (ii) and (iii) respectively. (b) Photoluminescence
spectrum of the bulk quantum dot quantum for a pump intensity of 66 Wcm−2.

Figure 3.6(a) traces (i) and (ii) show the measured photon count distribu-

tion n(τ) for the single excitonic (X) transition of the single quantum dot in the

bulk sample for two different pump intensities. These intensities correspond to an

excitation of the quantum dot well below saturation (Trace (i)) and at the onset of

saturation (Trace (ii)). Saturation is defined here as the pump intensity at which

the X line reaches its maximum intensity [32]. Photoluminescence spectrum of the

X line well below saturation (same pump intensity as Figure 3.6(a) trace (i)) is de-

picted in Figure 3.6(b). In Figure 3.6(a) traces (i) and (ii) exhibit clear dips in the

correlation counts for a time delay τ=0, indicating a strong photon antibunching.
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The values of the normalized count distribution n̄(0) are 0.32 and 0.46 for traces (i)

and (ii), respectively. These values are limited by the time resolution of our photon

counting setup. In order to correct for the time resolution, the normalized count

distribution n̄(τ) is fit with the correlation function g(2)(τ) = 1−ae−|τ |/tm convolved

with a gaussian time distribution with 420 ps FWHM. For g(2)(τ) a simple expo-

nential time dependence is assumed. The parameter a accounts for the background

present in the measurements. The resulting fitted g(2)(τ) is shown as solid line in

Fig. 3.6(a). The values of 1− a = g(2)(0) obtained from the fit are 0.23 and 0.34 for

traces (i) and (ii). The fact that g(2)(0) < 0.5 in both traces unambiguously indicates

that the measured photon antibunching from the X transition stems from a single,

anharmonic quantum emitter.

The measured correlation function g(2)(0) does not reach its theoretical

minimum of zero because of the presence of background straylight. The correlation

function g
(2)
b (τ) expected in the presence of a background radiation is g

(2)
b (τ) =

1+ρ2(g(2)(τ)−1) where ρ = S/(S+B) is the ratio of signal S to background B counts

[25]. From optical emission spectra of the single quantum dot we can determine ρ

for the X transition for the two pump intensities to be 0.9 and 0.83, respectively.

The resulting values of g
(2)
b (0) are 0.18 and 0.30, which are in good agreement with

g(2)(0) values determined by the fits. The antibunching time constants tm obtained

from the fit of g(2)(τ) are 750 ps and 450 ps for traces (i) and (ii). For comparison,

trace (iii) of Fig. 3.6(a) shows the correlation for multiple emission lines of many

quantum dots in a high-density region of the same sample. This correlation is flat

over the complete measurement time and its normalized value of 1 corresponds to a

Poissonian photon statistics. Here, many independent quantum dots contribute to

the measured correlation and any possible signature of antibunching from a single

dot is washed out.

Figure 3.7(a) shows the measured photon count distribution n(τ) for the

X transition of a single quantum dot located in a microdisk cavity for two different

pump intensities. The pump intensities correspond to an excitation of the quan-
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Figure 3.7: (a) Measured distribution of coincidence counts n(τ) and fit of the cor-
relation function g(2)(τ) (solid line) for a single quantum dot located in a microdisk
cavity, obtained at three different pump intensities: 17 Wcm−2 (Trace (i)), and
56 Wcm−2 (Trace (ii)). Single APD count rates are: Ni=6000 Hz, and Nii=7000 Hz
for traces (i), and (ii) respectively. (b) Photoluminescence spectrum of the quantum
dot under a pump intensity of 55 Wcm−2.

tum dot well below saturation (Trace (i)), and at the onset of saturation (Trace

(ii)). We verified that the quantum dot did not couple to a mode of the microdisk

resonator: the quantum dot X transition exhibits a resolution limited linewidth of

70 µeV (Figure 3.7(b)) whereas the nearest cavity mode (with linewidth 150 µeV) is

approximately 3 meV apart. In addition, at the pump intensities used in the correla-

tion measurements no mode is apparent in the optical spectrum. Only at high pump

intensities, when the single quantum dot ground state transition is highly saturated

and broadens spectrally, cavity modes start to increase in intensity, thereby allow-

ing for their identification. As the background radiation is weak for the quantum

dot located in the microdisk, the correlation measurements of Figure 3.7(a) show

very strong antibunching. The values of the normalized count distribution n̄(0) are
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Figure 3.8: (a) Measured distribution of coincidence counts n(τ) and fit of the corre-
lation function g(2)(τ) (solid line) for a reference quantum dot in the bulk region of
the microdisk sample, obtained at two different pump intensities: 60 Wcm−2 (Trace
(i)) and 80 Wcm−2 (Trace (ii)).

0.05, and 0.08 for traces (i), and (ii) respectively. The fit of g(2)(τ), yields values

of 1 − a = g(2)(0) of 0.02, and 0.00. The signal to background ratio for these mea-

surements is determined to be ρ= 0.98, and 0.98 respectively. The values of g
(2)
b (0)

expected in the presence of background thus are 0.04, and 0.04; these values agree

very well with the fitted values of g(2)(0). Hence, the data in Figure 3.7(a) corre-

spond to a perfect antibunching in the radiation from a single quantum dot. The

time constants for the exponential decay of the antibunching are determined from

the fit to be 3.60 ns, and 1.41 ns for the two pump intensities. A reference measure-

ment for a single quantum dot in an unprocessed part of the same microdisk sample

also shows strong antibunching with time constants of 870 ps and 812 ps for pump

intensities of 60 Wcm−2 and 80 Wcm−2, respectively (Figure 3.8).

From the pump intensity dependent time constants measured in the exper-

iments described above, the lifetime of a single exciton ground-state transition can

be determined by using the three-level model discussed in Section 3.4. By comparing
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Figure 3.9: Time correlated single photon counting setup

the predictions of the model with the measured lifetime data the lifetime for the sin-

gle exciton transition tX = 1/ΓX in the limit of a vanishing pump rate is estimated

to be 900±100 ps (bulk sample), 1.10±0.05 ns (microdisk sample, reference quantum

dot in the unprocessed part) and 3.9±0.5 ns (microdisk sample, quantum dot in a

microdisk). The uncertainties in the lifetime values are mainly due to fluctuations

of the pump intensity during the experiment (slight shifts of the translation stage

positions cause a change of the effective pump rate) and the uncertainty in relating

the measured pump intensities to pump rates in the theoretical model.

Even though the estimated lifetimes for the bulk quantum dots correspond

well to values in the literature [33], the exciton lifetime of the quantum dot located

in a microdisk cavity is considerably larger than the values previously reported. In

our microdisk sample the quantum dots located in microdisk structures consistently

exhibit lifetimes ranging from 2 to 4 ns. The difference in lifetimes could be explained

by the different photonic environments quantum dots are located in. This point is

discussed in Chapter 5.

3.5.3 Time-Correlated Single Photon Counting Experiments

As a further confirmation of the lifetime values determined by the second

order photon correlation measurements, conventional lifetime measurements using

time correlated single photon counting (TCPC) are performed [34]. Time correlated
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Figure 3.10: (a) Distribution of coincidence counts n(τ) and fit of the correlation
function g(2)(τ) (solid line) for a single quantum dot located in a microdisk cavity,
obtained at pump intensities: 35 Wcm−2 (Trace (i)), and 90 Wcm−2 (Trace (ii)). (b)
Result of TCPC measurement, the solid line correponds to a decay time of 2.9 ns.

single photon counting experiments rely on excitation of the single quantum dot by

a pulsed laser and monitoring the decay of the level populations after the trigger

from the pulse. The setup is very similar to the Hanbury Brown and Twiss setup, in

that TAC and MCA are still used to perform coincidence measurements, this time

the pulsed laser is used to trigger the start APD and the stop APD is triggered by

the photoluminescence from the quantum dot (Figure 3.9).

A comparison of the lifetime measurements performed by both TCPC and

second order photon correlation experiments on a specific quantum dot is shown

in Figure 3.10. Second order photon correlation experiments reveal decay times of

1.5 ns and 2.7 ns at pump power intensities of 90 Wcm−2 and 35 Wcm−2 that cor-

respond to excitation below saturation and at the onset of saturation respectively

(Figure 3.10(a)). From the three-level model, lifetime of this quantum dot is inferred

to be 3.5±0.5 ns. TCPC measurement done on this quantum dot single exciton tran-

sition is shown in Figure 3.10(b). Since TCPC measurements give the decay of the

population, in low excitation regime, the decay time in TCPC measurement gives the
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population lifetime. Hence from Figure 3.10(b), the lifetime of this quantum dot is

deduced to be 2.8ns±0.5 ns, provided this measurement is done in the low excitation

regime which is also evident from the absence of a plateau. In Figure 3.10(b) the

rise time is determined by the carrier capture time (< 35 ps, [18]), and limited by

the time resolution of the coincidence detection using APDs (420 ps).



Chapter 4

Triggered Single Photon

Emission

Conventional light sources such as light emitting diodes and lasers, generate

radiation that can be fully described using classical Maxwell’s equations. On the

other hand, several applications in the emerging field of quantum information science

require weak optical sources with strong quantum correlations between single photons

[35]. A single photon turnstile device [36] which relies on triggered emission of

individual photons is such a source that achieves the ultimate control in the photon

generation process at the single photon level.

Quantum cryptography emerges as a potential area of application for a

single photon turnstile device. An essential element of secure key distribution in

quantum cryptography is an optical source emitting a train of pulses that contain

one-and-only-one photon [37]. Since measurements unavoidably modify the state

of a single quantum system, an eavesdropper cannot gather information about the

secret key without being noticed, provided that the pulses used in transmission do

not contain two or more photons. For applications in quantum cryptography, specific

properties of single-photon pulses, such as precise photon energy, pulse duration and

37
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bandwidth are not of primary importance.

Recently, it has also been shown that availability of a single-photon source

enables implementation of efficient quantum computation using only linear optical

elements and efficient photo-detectors [7]. This proposal relies heavily on two-photon

interference on a beam-splitter for realization of probabilistic quantum gates and

state preparation. It is therefore crucial to have a source that generates identical

transform-limited single-photon pulses with vanishing time-jitter (Chapter 7).

Since its first proposal in 1994 [36], realization of a single photon turnstile

device has been one of the holy grails of quantum electronics research. An extension

of the first proposal was demonstrated in 1999 [38] where single as well as multiple

photon emission events with a repetition rate of 10 MHz at 50 mK were reported.

This device utilizes Coulomb blockade of tunneling for electrons and holes in a meso-

scopic p-n diode structure to regulate the photon generation process. In this scheme,

single electron and hole charging energies must be large compared to the thermal

background energy to ensure single photon emission. Therefore, this device can only

be operated at ultra-low temperatures (T≤1 K).

A triggered single-photon source based on π-pulse excitation of a single

Oxazine 720 molecule was proposed and demonstrated in 1996 [39], followed by

other demonstrations on single dibenzanthanthrene (DBATT) molecules in 1999 [40]

and single terrylene molecules in 2000 [41]. In contrast to the π-pulse excitation

scheme, the latter two single photon sources rely on pulsed excitation of a strongly

damped two-level system [42]. In the 1999 and 2000 demonstrations, using photon

correlation measurements, it was concluded that approximately 74% and 73% of the

pulses give rise to single photon emission or zero photon emission events at 1.8 K

and room temperature with repetition rates of 3 MHz and 6.25 MHz respectively.

Triggered single photon source based on adiabatic transfer in a single atom strongly

coupled to a cavity mode was also proposed [43, 44, 45]. The demonstration of such a

light source has been recently done, where each atom emitted up to seven photons [4]

during its interaction with the cavity mode.
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First unambiguous proofs of a triggered single photon source were demon-

strated using single InAs quantum dots (2000 [6], 2001 [46, 47, 27]). These demon-

strations revealed almost no probability of two or more than two photon emission

events per pulse: 100% [6] and 89% [46] of the pulses gave rise to single or zero photon

emission at 4 K and 5 K with repetition rates of 82 MHz and 76 MHz respectively. As

explained in this chapter, triggered single-photon generation in single InAs quantum

dots is achieved using a scheme similar to the one proposed for single molecules, i.e.

pulsed laser excitation of a strongly damped single two-level emitter [48]. Recently,

an electrically pumped single photon turnstile device [49] and single photon turnstile

device based on N vacancies in diamond have also been demonstrated [50].

4.1 Generation of Single Photons From a Single Two-

Level Emitter

Evidenced by the photon antibunching phenomenon, a two-level emitter

cannot emit two photons at the same time. This special property of an antibunched

light source can be explored to obtain a triggered single photon source where photon

emission events are regulated by pulsed excitation. Consider a strongly damped

two-level emitter [42] excited by a pulsed laser, under high excitation conditions

each pulse brings the system to the excited state causing the emission of a single

photon by spontaneous emission, and after the photon emission, the system is in the

ground state waiting for the next pulse. Hence, each pulse triggers one and only one

photon emission provided that the pulse width δT << 1/Γspon to eliminate second

photon generation, and pulse separation T >> 1/Γspon to ensure the recombination

event (Figure 4.1(a)). For a radiatively damped two-level emitter [39], triggered

single photon generation can be achieved using this same idea, by only making sure

that the laser intensity is such that it provides a π − pulse that brings the system

to the excited level at the end of each pulse. In this section triggered single photon

generation based on a strongly damped two-level emitter will be analyzed only as
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Figure 4.1: (a) Single photon generation from a two-level emitter (b) Average number
of photons emitted per pulse

it is used in the treatment of the single InAs quantum dot single photon turnstile

device under nonresonant excitation conditions.

4.1.1 A Strongly Damped Two-Level Emitter

The rate equations for the strongly damped two-level emitter are:

d

dt


 〈σ̂ee(t)〉
〈σ̂gg(t)〉


 =


 Wp(t) −Γspon
−Wp(t) Γspon




 〈σ̂ee(t)〉
〈σ̂gg(t)〉


 (4.1.1)

In Equation 4.1.1 the pulse shape is incorporated as the time dependent function

Wp(t). The average number of photons emitted per pulse is then given as [42]:

N =

∫ T

0
Γ〈σ̂ee(t)〉dt

An example solution for this equation considering a square shaped pulse with a pulse

width of δT = 0.1Γ and pulse separation of T = 10Γ is shown in Figure 4.1(b). In

this Figure it is clear that after a certain pumping intensity each pulse triggers one

and only one photon emission. The probability of exactly one photon emission per

pulse is given by [42]:

P1 = (
Wp

Wp − Γ
)2(e−ΓδT − e−WpδT )− ΓWpδT

r − Γ
e−WpδT
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At the high excitation regime Wp = 50Γ, P1 = 93.4% of the pulses lead to single

photon emission. This ratio would drastically increase for smaller excitation pulse

width δT .

4.1.2 Monte Carlo Simulations

Second order photon correlation of the triggered single photon source pre-

sented in Section 4.1.1 can be analyzed using Monte Carlo techniques. Considering

equation 4.1.1 together with the equation for second order correlation functions:

d

dτ


 G

(2)
ee (τ)

G
(2)
gg (τ)


 =


 Wp(t) −Γspon
−Wp(t) Γspon




 G

(2)
ee (τ)

G
(2)
gg (τ)


 (4.1.2)

where τ = t− t′, and Gee(τ) represents the second order photon correlation function.

The following Monte Carlo algorithm can be used in calculating the second order

photon correlation function:

For each t′ ∈ [0, T ]:

• Pick a random number ε, 0 ≤ ε ≤ 1

• If ε < 〈σ̂ee(t′)〉Γ∆t then decide that a valid start pulse is detected, calculate

G
(2)
ee (τ) using Equation 4.1.2 with the initial conditions G

(2)
ee (0) = 0, G

(2)
gg (0) =

〈σ̂ee(t′)〉

• If ε > 〈σ̂ee(t′)〉Γ∆t then a valid start pulse is not detected, discard G
(2)
ee (τ)

• t′ = t′ +∆t′

After many such iterations, the unnormalized second order photon correlation func-

tion G(2)(τ) can be determined as: G
(2)
exp(τ) = G

(2)
exp,ee(τ) = 1

N

∑N
i=1G

(2)
ee (τ). An

example simulation of this algorithm is shown in Figure 4.2. In this Figure the sig-

nature of the triggered single photon source operation is the absence of the peak

around τ = 0. For a pulsed periodic coherent source which emits Poissonian light,
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Figure 4.2: Monte Carlo analysis of a strongly damped two-level emitter.

the peak at τ = 0 would be identical to the peaks at integer multiples of the rep-

etition rate T , for all values of the mean photon number. In contrast, for an ideal

turnstile device, the peak at τ = 0 is absent [51] indicating sub-Poissonian photon

statistics. In Figure 4.2(c) the small peak that appears around τ = 0 is due to sec-

ondary photon emission events from the two-level emitter. For smaller pulse widths,

as the quality of the turnstile operation improves, this peak around τ = 0 would

disappear.

4.2 Single InAs Quantum Dot Single Photon Turnstile

Device

Using single quantum dots, regulation of photon emission process can be

achieved under pulsed excitation due to a combination of the anharmonic multi-
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exciton spectrum and slow relaxation of highly-excited quantum dots leading to

vanishing re-excitation probability following the photon emission event at the single

exciton transition [48]. Under high intensity nonresonant excitation conditions, two

or more electron-hole pairs are captured by the quantum dot during each excitation

pulse. Since the total recombination time of the multiexciton quantum dot state

(1 - 4 ns [26, 33]) is longer than the recombination time of the free electron-hole

pairs (∼ 300 ps [52]), each excitation pulse can lead to at most one photon emission

event at the single excitonic transition. Provided that the quantum dot single exci-

tonic recombination is predominantly radiative at liquid Helium temperatures [26],

and the single excitonic recombination is not spectrally shifted by the existence of

neighboring trapped charges, every excitation pulse from the mode-locked laser will

generate an ideal single photon pulse emitted at the single excitonic recombination

energy.

Figure 4.3 shows power dependent photoluminescence characteristics of a

single quantum dot under nonresonant pulsed excitation. Power dependence of the

single excitonic emission intensity shows the first signs of single photon source oper-

ation (Figure 4.3 inset). The single excitonic emission saturates at a certain pump

power that corresponds to the pump power at which the average number of excitons

in the s-Shell is 1. For larger pumping intensities, the emission level stays constant

indicating that the increase in the average number of excitons in the quantum dot

has no effect on the number of photons emitted from the single excitonic transition.

This is the first signature of a single photon turnstile device. The unequivocal proof

of the single photon operation is provided by the second order photon correlation

experiments as discussed in the following sections.

4.2.1 Analysis of a Three-Level Emitter

The analysis of the second order photon correlation function of the single

quantum dot can be done by assuming the quantum dot as a three-level system and
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Figure 4.3: Power dependent photoluminescence spectra of a quantum dot located
in a microdisk under nonresonant pulsed excitation. Saturation of single excitonic
emission is visible in the inset.

incorporating the effect of the free-carriers in the excitation pulse width. Figure 4.4

shows the result of such an analysis in which τX = 1.5 ns, τXX = 0.75 ns were

assumed together with τpulse = 300 ps, considering free-carrier lifetime of 300 ps.

The absence of a peak around τ = 0 is the signature of the triggered single photon

source.

This simulation indeed corresponds to the worst case scenario because life-

time of the free carriers generated in the wetting layer can be 300 ps or larger however

those generated in the substrate have much smaller lifetimes. We do not know which

of these free carriers are more efficiently captured by our quantum dots. Moreover

the quantum dots located in microdisk cavities have lifetimes longer than 2 ns due
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Figure 4.4: Monte Carlo analysis of the strongly damped three-level model. Consid-
ering τpulse = 300 ps, τX = 1.5 ns, τXX = 0.75 ns, and WpXX = 2WpX in average
1.0735 photons are emitted per pulse.

to the effect of the photonic environment as discussed in Chapter 3, and biexcitonic

emission lifetime is longer than half of the single excitonic emission lifetime for our

quantum dots (Chapter 6).

4.2.2 Experimental Results

In this section we demonstrate our experimental results on single photon

operation obtained from two separate quantum dots. Results from one quantum dot

are depicted in Figures 4.5, and 4.6 while results from the other quantum dot are

shown in Figure 4.7. Both of these quantum dots are embedded in 5 µm microdisks.

Figure 4.5(a) shows the photoluminescence spectrum of the first single quan-

tum dot investigated in this section, taken under continuous wave excitation. The

resolution limited photoluminescence peak at 1.3406 eV (shown by the arrow in the
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Figure 4.5: Photoluminescence spectrum of a single InAs quantum dot embedded in
a 5 µm diameter taken microdisk under nonresonant continuous wave (a) and pulsed
excitation (b) conditions. Contributions from the excitonic ground state transition
(X), and higher excited states (e.g. biexciton (XX)) are visible. Inset in figure (a):
Measured unnormalized correlation function G(2)(τ) of the single quantum dot X
transition under continuous wave excitation.

figure) is identified as due to the single excitonic (X) recombination while the peak

at 1.3410 eV is probably due to a charged excitonic recombination (Chapter 6). The

photon correlation experiment shown in the inset of Figure 4.5(a) was performed for

the X peak shown in Figure 4.5(a); we were able to filter only the X transition by

using the spectrometer. The feature at 1.339 eV shows a superlinear increase with

excitation intensity and originates from a biexciton decay (XX). The inset shows the

measured unnormalized continuous wave correlation function G(2)(τ) for the same

X transition at a pump power much smaller than the onset of saturation. Satura-

tion is defined here as the pump intensity where the X line reaches its maximum

intensity [32]. The dip at τ = 0 arises from photon antibunching and the fact that

g(2)(τ) < 0.5 proves that the light from the X transition stems from a single quantum

dot.
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Figure 4.6: Measured unnormalized correlation function G(2)(τ) of (a) a mode-locked
Ti:Sa laser (FWHM = 250 fs), and (b) a single quantum dot single excitonic ground
state (X) emission under pulsed excitation conditions (82 MHz). The quantum dot
X transition was out of resonance with the microdisk modes.

For the quantum dot mentioned in the previous paragraph, we obtained the

photoluminescence spectrum depicted in Figure 4.5(b) under nonresonant pulsed ex-

citation conditions. We note that due to different excitation conditions (continuous

wave (Figure 4.5(a)) and pulsed (Figure 4.5(b))) the relative intensity of emission

peaks from the same quantum dot are different in Figure 4.5(a) (continuous wave

excitation), and Figure 4.5(b) (pulsed excitation). This is due to the charged exciton

phenomenon, from Figures 4.5(a), and 4.5(b) we can conclude that for this specific

quantum dot, charged excitonic emission is more favored under nonresonant contin-

uous wave excitation than it is under nonresonant pulsed excitation. This point is

further addressed at the end of this chapter, and in Chapter 6.

Figure 4.6 shows the measured unnormalized correlation function G(2)(τ)

for (a) the pulsed Ti:Sa laser, and (b) the X transition depicted in Figure 4.5(b). At

4 K, the emission of this quantum dot is far detuned from all microdisk whispering

gallery modes. The experiment shown in Figure 4.6(b) is performed at a pump
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intensity corresponding to an excitation level well larger than the saturation power

of the X emission. As expected, the measured G(2)(τ) of the pulsed Ti:Sa laser

exhibits peaks at integer multiples of pulse separation, T = 12.27 ns, with negligible

signal in between the peaks. The measured G(2)(τ) of the X emission at T = 4 K

(Figure 4.6(b)) also shows peaks at integer multiples of T , indicating the locking of

the photon emission to the pulsed excitation. However, in contrast to the photon

correlation function of the mode-locked laser, the peak at τ = 0 is no longer present,

i.e., the probability of finding a second photon following the detection of the first

photon at τ = 0 vanishes. Absence of the peak at τ = 0 provides strong evidence for

an ideal single photon turnstile operation.

The lifetime of the single excitonic transition (X) was determined from

continuous wave antibunching experiments to be 2.2 ns (Figure 4.5(a) inset), which

is the shortest possible time it takes before a single excitonic recombination event for

this quantum dot. As the recombination time in the GaAs barrier and the wetting

layer is considerably faster (∼300 ps [52]), following the excitation by each pulse, no

free carriers are available to re-excite the quantum dot after the X recombination

process. This is also evident in the simulation results shown in Figure 4.4. Therefore

at most one X recombination process per pulse can occur under these conditions. To

ensure that a single photon is indeed emitted for each excitation pulse, the pump

power of the excitation laser should be adjusted so that the probability of having no

injected electron-hole pair in the quantum dot is negligible. The fact that the photon

correlation measurement depicted in Fig. 4.6b was obtained well in the saturation

regime ensures that the quantum dot is multiply-excited in our experiments, implying

one and only one X recombination event per pulse. Furthermore, for our samples the

dominant recombination mechanism is radiative, at liquid He temperatures (quantum

efficiency, η ∼ 1). This is due to the fact that the lifetimes of our quantum dots are

prolonged (inhibited spontaneous emission (Chapter 5)) when they are located in

microdisk cavities due to the change in the available optical mode density, and zero

point field fluctuations. If the dominant recombination mechanism were nonradiative,
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Figure 4.7: Measured unnormalized correlation function G(2)(τ) of a single quantum
dot single excitonic ground state (X) emission under pulsed excitation conditions
(82 MHz) at power levels below and above saturation.

different photonic environment of the microdisk cavities would not have such an

effect, the only possible change in the lifetime could be a decrease due to the increased

number of surface states. These facts allow us to conclude that the generated light

at the excitonic ground-state transition energy X is a stream of single photons with

a repetition rate of 82 MHz.

Pump power dependent measurements of G(2)(τ) of another quantum dot

whose single excitonic emission is not coupled to any microdisk whispering gallery

modes are depicted in Figure 4.7. This figure shows that G(2)(0) is essentially in-

dependent of excitation pulse power. These results indicate that probability of two

photon emission (per pulse) is negligible even when the X transition is well below

saturation. In Figure 4.7 it is also apparent that the FWHM of the peaks increases
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with pumping power. This is due to the increase in the time-jitter of single photon

emission events caused by larger multi-excitonic decay times at higher pump powers.

Even though the sub-Poissonian photon statistics persists in a single pho-

ton turnstile device at all collection efficiencies, for such a source to become widely

practical, high collection efficiency is strongly required. From that respect, InAs

quantum dot turnstile device has a clear advantage over single molecule based sin-

gle photon sources: it can be incorporated in the III-V semiconductor microcavity

structures. A single InAs quantum dot can be resonantly coupled to a microcav-

ity (e.g. micropillar) mode ensuring a high collection efficiency provided that the

cavity structure has a directional output [48, 53, 54]. Furthermore, when a high-Q,

low volume microcavity is used, the Purcell effect can significantly reduce the jitter

in the single photon emission time. We have indeed demonstrated that coupling a

single quantum dot to a microdisk whispering gallery mode significantly reduces the

photon emission time jitter [6, 55]. This demonstration together with other points

related to cavity - quantum dot coupling are explained in Chapter 5.

Despite these facts, a limitation in obtaining a high collection efficiency

from the single quantum dot single photon source is the existence of charged excitons

(Chapter 6). Under nonresonant excitation conditions, InAs quantum dots capture

carriers individually as well as in pairs; hence in proper excitation intensities single

excitonic recombination in the presence of a single charge in the quantum dot is

probable. This would prevent the true single photon operation as each photon is

not emitted via a neutral excitonic (X) recombination. A nearby acceptor or donor

impurity atom would also increase the relative intensity of charged excitonic emission

causing imperfect single-photon operation. Charged excitonic recombination due to

impurity atoms can be avoided by minimizing the chamber contamination during

the MBE growth, while p-shell excitation can be used to avoid charged excitonic

emission due to single carrier capture events, as explained in Chapter 7.

We envision that using cavity-enhanced collection efficiency and cavity-

enhanced radiative recombination, our single photon turnstile device could generate
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single photon pulses at a repetition rate up to > 100 MHz. The operating tem-

perature of the InAs quantum dot single photon source can be easily extended to

T=77 K, which would be very significant for practical applications. Furthermore

our single photon source has the potential to emit transform limited single photons

at temperatures smaller than 10 K as we discuss in Chapter 7. This is a crucial

property for its application in linear optics quantum computation [7].



Chapter 5

Cavity-QED Using Single

Quantum Dots

The elementary system in cavity-quantum electrodynamics (QED) is a two-

level emitter interacting resonantly with a single cavity mode. Basic properties of the

two-level emitter can be dramatically modified if the photon lifetime, determined by

the cavity quality (Q) factor, is long, and the electric field per photon (Evac) inside

the cavity, determined by the square root of the reciprocal cavity volume (Vcav), is

large. Depending on the coupling strength between the two-level emitter and the

cavity mode, spontaneous emission can be enhanced (weak coupling regime) or be-

comes reversible (strong coupling regime) [56]. Since the 1980s, several experiments

have demonstrated that radiative decay rate can be significantly modified by plac-

ing atoms inside a cavity structure in the weak coupling cavity-QED regime [57].

Experiments based on a single atom injected into a high-Q cavity have achieved

the strong-coupling regime of cavity-QED, which in turn enabled the demonstration

of conditional quantum dynamics [58], decoherence of mesoscopic superposition of

quantum states, and creation of entanglement between three distinguishable quan-

tum systems [59].

52
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Two-level nature of the single excitonic transition of single quantum dots,

that was unequivocally demonstrated in the previous chapters, together with the

advanced semiconductor microcavity processing capabilities, makes cavity-QED re-

search in InAs quantum dots highly rated. This field of research promises applications

such as high speed light sources [48] and quantum information processing [60]. Since

quantum dot location inside the cavity is fixed by the growth, this system is free of

the stringent trapping requirements that limit its atomic counterpart. The maximum

time a single atom could have been trapped so far has been a few seconds [61], in

contrast, single quantum dots are naturally trapped for years.

The first results on cavity-QED using quantum dots dates to 1998 [62] where

enhanced spontaneous emission in the weak coupling cavity-QED regime has been

observed from an ensemble of quantum dots embedded in micropillar cavities. Since

then, weak coupling cavity-QED regime has been reached by using ensemble of quan-

tum dots embedded in microdisk cavities (1999 [48], 2002 [63]), and single quantum

dots embedded both in microdisk (2001 [55]) and micropillar cavities (2001 [54]).

Strong coupling regime using quantum dots is still a rather difficult experimental

challenge to be met [64]. Improvements in microcavities towards larger Q values,

and smaller mode volumes are necessary for that purpose.

In this chapter, first the basic theoretical treatment for cavity-QED is given,

then microdisk whispering gallery modes are presented, followed by the experimental

results showing weak coupling cavity-QED regime. We will also discuss our obser-

vation of inhibited spontaneous emission from quantum dots located in microdisk

cavities.

5.1 Analysis of Cavity-Single Quantum Dot Interaction

The general treatment of cavity-QED can be done using the Jaynes-Cummings

Hamiltonian, from which the Rabi oscillations and normal mode splitting can be de-

duced. Such a treatment where an ideal dipole and cavity are considered is done
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Figure 5.1: Two-level emitter coupled to a cavity mode

in Appendix B. In this section however, a realistic scenario of single quantum dot

- microcavity coupling is investigated considering spontaneous emission and cavity

decay rate.

For a two-level system depicted in Figure 5.1, resonantly coupled to a micro-

cavity mode, considering broadenings in the dipole (γ) due to spontaneous emission

and cavity mode (κ) due to coupling to an outside reservoir, a master equation can

be written as [56]:

d

dt
ρ̂ =

1

ih̄
[Ĥ ′, ρ̂] + γ(2σ̂geρ̂σ̂eg − σ̂eeρ̂− ρ̂σ̂ee)

+κ(2âρ̂â† − â†âρ̂− ρ̂â†â) (5.1.1)

In the low excitation limit, where the cavity is assumed to host in average not more

than one photon, equation 5.1.1 can be solved considering only the vectors |g, 0〉,
|e, 0〉, and |g, 1〉, revealing the following equations for the mean values of â, and σ̂eg:

d

dt


 〈â(t)〉
〈σ̂eg(t)〉


 =


 iω0 − κ ΩC

−ΩC iω0 − γ




 〈â(t)〉
〈σ̂eg(t)〉


 (5.1.2)

The eigenvalues of this equation are:

λ = iω0 − (
κ+ γ

2
)±

√(
κ− γ
2

)2

− Ω2
C

(i) In strong coupling regime (ΩC >
|κ−γ|
2 ):

λ = iω0 −
(
κ+ γ

2

)
± i
√

Ω2
C −

(
κ− γ
2

)2

(5.1.3)
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the system exhibits Rabi oscillations with angular frequency
√
Ω2
C − (κ−γ2 )2 as well

as a coherence decay rate of κ+γ
2 .

(ii) In weak coupling regime (ΩC <
|κ−γ|
2 ), considering κÀ γ:

λA = iω0 − γ(1 +
Ω2
C

κγ
) (5.1.4)

λC = iω0 − κ(1−
Ω2
C

κ2
)

λA is the dipole-like solution while λC is the cavity-like solution. The dipole-like

solution decays with an enhanced rate of γ(1 +
Ω2
C

κγ ), the enhancement factor,
Ω2
C

κγ , is

the Purcell factor [65, 64]. From λC in the above solutions, it is also seen that the

decay of the cavity-like solution is inhibited, however the inhibition factor,
Ω2
C

κ2
, is

negligibly small in the assumed weak coupling regime (κÀ γ).

The solution studied in case (ii) is the relevant situation for the experimental

results that we are going to demonstrate. This Purcell regime assumes a broad

cavity mode (κ) and a relatively small dipole-cavity mode coupling strength (ΩC).

This regime can also be investigated by using the Fermi Golden rule. Spontaneous

emission rate is given by the following formula when the dipole is assumed to be

coupled to a large number of optical modes available:

1

τ
=

2π

h̄2
ρ(ωeg)E

2
max〈|〈µeg · ε〉|2〉 (5.1.5)

where ρ̂(ωeg), Emax, µeg, and ε denote the available optical mode density, maximum

field per photon, dipole matrix element, and the field polarization respectively. For

a constant refractive index environment, the optical mode density is ρ̂uni(ωeg) =
ω2egV n

3

π2c3
, Emax,vac =

√
h̄ωeg

2ε0n2Veff
, and 〈|〈µeg · ε〉|2〉 = 1

3 |µeg|2 considering the random

polarization of the vacuum modes. The uniform index material spontaneous emission

is then given as:

1

τuni
=

ω3
egn

3πε0h̄c3
|µeg|2 (5.1.6)

When the dipole is coupled to a specific broad cavity mode however, the

optical mode density becomes ρ̂uni(ωeg) =
2Q
πωeg

, revealing the spontaneous emission
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rate:

1

τcav
=

2Q

h̄ε0n2Veff
〈|〈µeg · ε〉|2〉 (5.1.7)

Hence the Purcell enhancement in the spontaneous emission rate is:

FP =
1/τcav
1/τuni

=
3

4π2
Q(λeg/n)

3

Veff

〈|〈µeg · ε〉|2〉
|µeg|2

(5.1.8)

This equality of the Purcell factor can also be driven from the Eequation 5.1.4 where

an enhancement in spontaneous emission by
Ω2
C

κγ was found. Substituting the equa-

tions for ΩC , κ, and γ:

ΩC =
2|µeg · ε|Emax

h̄
, κ =

Q

ωeg
, γ =

ω3
egn

3πε0h̄c3
|µeg|2

⇒ FP =
Ω2
C

κγ
=

3

4π2
Q(λeg/n)

3

Veff

〈|〈µeg · ε〉|2〉
|µeg|2

5.2 Microdisk Whispering Gallery Modes

5.2.1 Analysis of Whispering Gallery Modes

Microdisk cavities are easy-to-process microcavities that provide highly con-

fined optical resonances named whispering gallery modes [66]. These modes can have

high Q values for relatively small mode volumes (Q = 12000 for a 2 µm microdisk,

Vcav ≈ 50(λ/2n)3 [19]) due to the strong photonic confinement, making them suitable

for cavity-QED studies despite the fact that they do not provide directional emission.

These resonances that are confined by total internal reflection, circulate around the

disk circumference. They are characterized by azimuthal (M) and radial (N) mode

numbers, where M determines the azimuthal dependence exp(iMφ) and N-1 denotes

the number of nodes in the radial direction (Figure 5.2). They exhibit a two-fold

degeneracy due to the azimuthal dependence (M, and -M). The whispering gallery

modes with N=1 are contained within a ring width of λ/2n [66]. For our microdisk

structures only low radial number modes (N = 1, 2, 3) are observable since the post

provides large optical losses for high radial number modes.
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Figure 5.2: Finite difference time domain simulation of a whispering gallery mode
characterized by M=17, and N=11. Asymmetry in the mode shape is due to the
finite mesh size.

In order to solve for the whispering gallery modes, a disk standing freely

in the air can be considered. Since the whispering gallery modes of interest are not

considerably coupled to the post region, this assumption is justified. Then consid-

ering the microdisk as a slab, the three dimensional problem can be approximately

reduced to two dimensions by using an effective refractive index [67] (Figure 5.3).

For disk thickness d < λ/2n only the lowest order transverse electric (TE) mode is

dominant over the slab’s thickness. For this radially oriented electric field (direction

r in Figure 5.3(b)) the following boundary conditions can be written:

Acos(kz
d
2) = Be−α

d
2

Akzsin(kz
d
2) = Bαe−α

d
2

⇒ kztan(kz
d

2
) = α

where kz and α are defined as: k2z = k20(n
2
0 − n2xy) and α2 = k20(n

2
xy − 1), and nxy

denotes the effective index of the two dimensional problem. Using these relationships

kz can be solved from:

kztan(kz
d

2
) =

√
k20(n

2
0 − 1)− k2z
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Figure 5.3: Effective index approximation

The effective index can then be calculated as: n2xy =
k20n

2
0−k2z
k20

The whispering gallery resonances are then given by the solution of the two

dimensional Helmholtz equation:

∇2ψ + n2xyk
2
0ψ = 0

The above equation has eigensolutions in the form ψ = eimφJm(nxyk0ρ̂) where Jm

corresponds to the mth order Bessel function. Due to strong in-plane confinement

of the whispering gallery resonances, perfect conductor boundary conditions in the

microdisk plane can be imposed to a good approximation revealing the relationship

n2xyk
2
0 =

x2mq

R2
where R denotes the radius of the microdisk, and xmq denotes the qth

root of mth order Bessel function. This solution is referred to as TEM,N , M and

N correspond to azimuthal and radial mode numbers respectively. In summary the

relevant highly confined TEM,N whispering gallery resonances can be approximately

solved by the below set of equations:

kztan(kz
d

2
) =

√
k20(n

2
0 − 1)− k2z (5.2.1)

n2xyk
2
0 =

x2mq
R2

(5.2.2)

Solution of Equations 5.2.1, and 5.2.2 for radial numbers N=1, and 2 is depicted in

Figure 5.4.
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Figure 5.4: Calculated microdisk whispering gallery modes for different disk diam-
eters. Solid lines correspond to TEx,1 modes for x=15,45 , dashed lines correspond
to TEx,2 modes for x=11,40

5.2.2 Experimental Analysis of Whipering Gallery Modes

We determined the whispering gallery modes by performing regular pho-

toluminescence experiments on microdisks having quantum dots embedded in their

center planes. Using the coupling between the quantum dots and whispering gallery

modes we were able to indirectly couple to whispering gallery modes by exciting the

quantum dots. Quantum dot emission that was coupled to whispering gallery modes

were then readily observable in the photoluminescence spectrum. This measurement

is an efficient way of determining the whispering gallery modes, we do not need to

couple to the modes in special manners to observe their emission.

Figures 5.5, and 5.6 show photoluminescence spectra obtained from 4.5 µm,

and 2 µm diameter microdisks having high density quantum dots embedded in their
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Figure 5.5: Photoluminescence spectrum of a 4.5 µm diameter microdisk having
high density quantum dots embedded in the center plane. For comparison the PL
spectrum of an unprocessed part of the wafer is also shown under similar excitation
conditions. Inset: High resolution spectra of two WGMs.

center planes. By comparing these spectra to the photoluminescence spectrum of

bulk region we can identify the whispering gallery modes. The change of mode

separation with microdisk diameter is apparent from these figures. Our experiments

revealed whispering gallery modes whose Q values were limited to our resolution of

18000 from 4.5 µm microdisks (Figure 5.5), while Q values as high as 9000 have

been observed from 2 µm diameter microdisks (Figure 5.6). Laser operation was

also observed for these high quality modes at 6 K [20].
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Figure 5.6: Photoluminescence spectrum of a 2 µm diameter microdisk having high
density quantum dots embedded in the center plane. High quality whispering gallery
modes are visible.

5.3 Experimental Results

5.3.1 Demonstration of the Purcell Effect by Photon Correlation

Experiments

Coupling between a single quantum dot single exciton transition and a

microdisk whispering gallery mode is demonstrated in this section by both photolu-

minescence and second order photon correlation measurements. Indications of the

Purcell effect as a result of the weak coupling cavity-QED regime will also be dis-

cussed. The specific quantum dot we chose for this analysis has the power dependent

(T = 4 K) photoluminescence spectra shown in Figure 5.7. As we will discuss later

in the text, the small red detuning of the WGM emission from the single excitonic

emission of the quantum dot is very convenient for this analysis. In the lowest exci-

tation power, only one peak with resolution limited linewidth (70 µeV) appears at

an energy of 1.3219 eV. We identify that peak as the single excitonic transition of

the quantum dot, this peak will be referred to as the X transition in the remaining



CHAPTER 5. CAVITY-QED USING SINGLE QUANTUM DOTS 62

1.315 1.320 1.325 1.330 1.335 1.340 1.345 1.350

1250

250

x5 in int.

WGM X

1

65
15

125

P (W/cm
2
)

In
te

ns
ity

 (
a.

u.
)

Energy (eV)

 

Figure 5.7: Power dependent photoluminescence spectra of a single quantum dot in
microdisk cavity taken at 4 K under continuous wave excitation. Luminescence of
the quantum dot single-exciton (X) transition, the whispering gallery mode (WGM),
higher exciton lines and contributions of other WGMs are visible.

of this section. This identification is further supported by the results of the photon

correlation measurements shown in Figure 5.9 that will be discussed later in the text.

The peak at 1.3207 eV is identified as a whispering gallery mode (will be abbreviated

as WGM) by its relatively large linewidth of 200 µeV. The linewidth of the WGM

corresponds to a Q value of 6500. The source of the WGM radiation at 4 K is not

clearly identified, it might be caused by the residual emission from the GaAs disk, or

by the emission from the quantum dot. There is an indication supporting the latter:

In microdisk cavities that do not contain any quantum dots, we have not observed

WGM emission in the quantum dot emission energies (1.25 eV-1.35 eV) even though

we observed mode emission on the wetting layer luminescence (1.44 eV). The spec-
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Figure 5.8: (a) Temperature dependent photoluminescence spectra taken under con-
tinuous wave excitation. X lines at various temperatures are connected as a guide
for eye. (b) Change of the WGM and the X transition emission energy with tem-
perature (excitation power = 15 W/cm2). (c) Change in the intensity of the WGM
luminescence with X-WGM detuning (excitation power = 15 W/cm2).

trum with highest incident power in Figure 5.7 also helps the identification of WGMs.

At that large pumping intensities we are able to saturate all the quantum dot tran-

sitions, and quantum dot lines become very broad (> 5 meV ) making the WGMs

visible. Temperature dependent characteristics plotted in Figure 5.8 together with

the observed Purcell effect that is discussed later in this section provide additional

evidence for the identification of the WGM.

The crossing between the X and WGM resonances is demonstrated in Fig-

ure 5.8. The WGM appears at an energy of 1.3207 eV at 4 K and shifts only slightly

to an energy of 1.3196 eV at 54 K while the X transition shifts by over 3 meV within
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50 K temperature difference (Figure 5.8(b)). The different energy shifts of the X

transition and the WGM with temperature give rise to a crossing of the two reso-

nances. The temperature dependence of the energy of the WGM can be attributed to

the change in the refractive index of GaAs with temperature. On the other hand, the

temperature dependence of the energy of the X transition is caused by the changes in

the bandgaps of InAs and GaAs with temperature. Figure 5.8(c) shows the change

in the intensity of the WGM emission as a function of the X-WGM detuning under

the same excitation conditions. At a temperature of 44 K (zero detuning) the in-

tensity of the WGM luminescence increases by a factor of 29 compared to its value

at 4 K, strongly indicating a resonance between the X transition and the WGM. In

resonance residual emission in the WGM is thus negligible (3%) compared to the

emission due to the X transition.

As described in the previous sections, in the weak coupling cavity-QED

regime, enhancement of the spontaneous emission rate of the quantum dot X tran-

sition due to the Purcell effect is expected. For our specific WGM Q is 6500,

and effective mode volume is Veff = 30(λ/n)3 considering an effective mode area

of 0.86λ2(R/λ)3/2 (R denoting the radius of the microdisk) and thickness of ∼
0.6(λ/n) [48]. Assuming an ideal spatial and polarization match between the WGM

and X resonances, an ideal Purcell factor of FP = 16 can be calculated using Equa-

tion 5.1.8. Considering the dipole orientation of the quantum dot being random in

plane, together with the twofold degeneracy of the WGM, the total effective enhance-

ment in the X transition’s recombination rate becomes: FE = 2
2FP + 1 = 17, while

spatial mismatch between the quantum dot and WGM would result in a smaller

value. In our case, the precise location of the quantum dot within the disk is not

known, preventing us from determining the expected Purcell effect.

To quantify the magnitude of the Purcell effect we carried out pump power

dependent photon correlation measurements under continuous wave excitation. As

discussed in Chapter 3 this method is an alternative to standard time-resolved mea-

surements for determining recombination times [26]. Figure 5.9(a) shows photon
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Figure 5.9: Measured photon correlation function of the X transition: (a) out of
resonance with the WGM, at 4 K, under excitation powers of 35 W/cm2 (trace (i)),
and 90 W/cm2 (trace (ii)); (b) in resonance with the WGM, at 44 K, under excitation
powers of 5 W/cm2 (trace (i)), and 45 W/cm2 (trace (ii)).

correlation measurements at 4 K (out of resonance) at two different excitation in-

tensities (traces (i) and (ii)), while photon correlation measurements performed at

44 K (in resonance) at two different excitation intensities are plotted in Figure 5.9(b)

(traces (i) and (ii)). After normalization, the measured correlation functions show

clear dips at zero time delay (g(2)(0) = 0.08 in Figure 5.9(a) trace (i), g(2)(0) = 0.38

in Figure 5.9(b) trace (i)) indicating strong photon antibunching. Since g(2)(0) < 0.5

in our measurements, we can state that the observed emission lines are primarily due

to the X transition of a single quantum dot [26]. Hence, in resonance, the X transi-

tion is the main emission feeding the WGM luminescence. We explain the value of

g(2)(0) in Figure 2(b) being 0.38 instead of the ideal value of 0 by the short decay

time (560 ps) which is comparable to the time resolution of the Hanbury Brown and



CHAPTER 5. CAVITY-QED USING SINGLE QUANTUM DOTS 66

0 20 40 60 80
0

10

20

30

40

50

60

(a) Exciton out of resonance

 

 

Delay Time τ (ns)

G
(2

) ( τ
)

0 20 40 60 80
0

20

40

60

80

(b) Exciton in resonance

Delay Time τ (ns)

 

 

G
(2

) ( τ
)

Figure 5.10: Measured unnormalized correlation function G(2)(τ) of the X transition
(a) out of resonance, and (b) in resonance with the WGM, under pulsed excitation
conditions (82 MHz). The average pump intensity in both cases was ∼ 22 W/cm2.

Twiss setup (420 ps).

From photon correlation measurements at 4 K decay times of 2.7 ns and

1.5 ns were observed at excitation levels below saturation (35 W/cm2, Figure 5.9(a)

trace (i)) and at the onset of saturation (90 W/cm2, Figure 5.9(a) trace (ii)) of the X

transition, respectively. Using the three-level rate-equation model discussed in Chap-

ter 3, a lifetime of 3.4 ns is determined for the X transition at 4 K. This value is larger

than previously reported lifetimes for the X transition of single InAs QDs (∼ 1 ns).

This lifetime difference is explained by the different photonic environment created

by the microdisk that partially inhibits spontaneous emission, this phenomenon will

be further explained in Section 5.5.

Our photon correlation measurements in resonance, 44 K, revealed decay

times of 560 ps and 370 ps at pump powers of 5 W/cm2 (Figure 5.9 (b) trace (i)),

and 45 W/cm2 (Figure 5.9 (b) trace (ii)) respectively, corresponding to excitation

levels below the saturation of the X transition. By using the pump power dependent

method, a lifetime of 590 ps is determined for the X transition at 44 K. Comparing
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Figure 5.11: Measured unnormalized correlation function G(2)(τ) of the X transition
in resonance with the WGM, under pulsed excitation conditions (82 MHz) with
average excitation intensities of 55 W/cm2 (trace (i)), and 300 W/cm2 (trace (ii))

the lifetimes in and out of resonance, and by assuming the effects of the nonradiative

recombination to be negligible in both measurements, we deduce an enhancement in

the spontaneous emission rate of the X transition by a factor of 6.

This value of 6 is also in agreement with the results of photon correlation

measurements performed under pulsed excitation on this same quantum dot. These

measurements are depicted in Figure 5.10. Under pulsed excitation the FWHM of

the peaks is given by the total relaxation time of the quantum dot from the multi-

excitonic state to the ground state. Hence the difference in the FWHM of the peaks

in Figure 5.10 is due to the Purcell effect, and the ratio of the FWHMs at two

temperatures provides a lower limit for Purcell effect which is 3.4 for our case [6].

A small peak at τ = 0 is observed in the resonant case (see Figure 5.10(b)).

The intensity ratio of this peak to the peaks at iTrep is directly related to the fraction

of pulses having two or more photons [40]. An experimental ratio R = 0.29 is
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deduced from Figure 5.10(b). The fact that R is larger than the ideal value of zero

could be due to the Purcell effect, which increases the probability of capturing a

second electron-hole pair from the wetting layer after the X recombination process

has occurred. Another possible explanation is the contribution from the background

light generated by the residual emission from the GaAs disk and the wetting layer.

Using higher average pump powers P in the resonant case increases R (R = 0.36

(0.55) for P = 56 (303) W/cm2, Figure 5.11), this observation is in agreement with

both explanations.

5.3.2 Direct Proof of the Purcell Effect by TCPC Experiments

In this section we show the direct demonstration of the Purcell effect for

a single quantum dot located in a microdisk cavity using the conventional time

correlated single photon counting (will be denoted as TCPC) experiments. These

experiments demonstrate an enhancement in the radiative recombination rate of

a quantum dot due to weak coupling cavity-QED regime as well as proving that

temperature tuning has no effect on the lifetime of the quantum dot X transition

between 4 - 50 K.

Figure 5.12 shows the results of TCPC experiments performed on a single

quantum dot X transition at 4 K and 50 K. The quantum dot used in these mea-

surements is located in a 5 µm diameter microdisk cavity and the X transition is not

coupled to any WGMs. These measurements were all performed in the low excita-

tion regime where the decay time corresponds to the lifetime of the X transition [68].

Measured similar decay times of 1.7 ns at 4 K and 1.9 ns at 50 K show that when

the X transition is not coupled to any WGMs its lifetime shows almost no depen-

dence on temperature between 4 - 50 K. Hence, nonradiative recombination does not

significantly affect the dynamics of the X transition within this temperature range.

This result is in agreement with the temperature dependent lifetime measurements

using high density quantum dot samples [69, 70, 71].
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Figure 5.12: (a) Time correlated single photon counting measurements on the single-
exciton (X) transition of a quantum dot at 4 K and 50 K, out of resonance with any
WGMs.

In order to directly observe the Purcell effect, we performed TCPC experi-

ments on the same quantum dot discussed in Section 5.3.1. The obtained photolumi-

nescence spectrum and TCPC measurements are shown in Figure 5.13. We should

note here that these TCPC measurements were performed about six months after the

initial experiments reported in Section 5.3.1, and in the mean time we have observed

changes both in quantum dot and mode properties. These changes will be explained

in Section 5.4.

Figure 5.13(a) shows the photoluminescence spectrum of the quantum dot

under pulsed excitation at 790 nm. At T = 4 K the resolution limited (70 µeV) peak

at 1.3221 eV is identified as the single exciton recombination (X) line, whereas the

emission at 1.3218 eV (WGM) is due to background emission that is coupled to a

WGM. The linewidth of the WGM, 160 µeV, corresponds to a Q value of 8300. We

note that the source of the WGM radiation at 4 K might be caused by the emission

from the quantum dot, or the residual emission from the GaAs. We achieved to tune

the X and WGM emissions in resonance with each other by changing the sample
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Figure 5.13: (a) Photoluminescence spectrum of a single InAs quantum dot, embed-
ded in a 5 µm diameter microdisk, taken under nonresonant pulsed excitation at
4 K, 31 K, and 48 K. Resonance between the excitonic ground state transition (X),
and a whispering gallery mode (WGM) is visible at 31 K. (b) Time correlated single
photon counting measurements on the single-exciton (X) emission: out of resonance
with the WGM (4 K, 48 K), in resonance with the WGM (31 K). Relative pump
intensities were P, 0.06P, and 0.4P at 4 K, 31 K, and 48 K respectively.

temperature to 31 K. Photoluminescence spectra taken at 31 K, and 48 K are also

shown in Figure 5.13(a). Since those spectra were taken under nonresonant pulsed

excitation conditions, at 31 K the resonant enhancement in the spontaneous emission

rate does not increase the WGM intensity.

Figure 5.13(b) demonstrates TCPC experiments at three different tempera-

tures taken under low excitation conditions where the biexciton emission or emission

from the higher excited states were not observed. These measurements revealed iden-

tical decay times of 1.8 ns at 4 K and 48 K showing that when the X transition is

not coupled to any WGMs its lifetime has no dependence on temperature between 4

- 48 K. Hence, nonradiative recombination does not significantly effect the dynamics
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Figure 5.14: Photoluminescence spectra taken under nonresonant pulsed excitation
for relative pump intensities 0.24P, and P at 4 K. The decrease in the background
coupling to the WGM is apparent.

of the X transition within this temperature range. When the X emission is in reso-

nance with the WGM at 31 K, the decay time is reduced to 850 ps, leading to the

observation of a Purcell factor of at least 2. The measurement at 31 K was performed

under low-excitation conditions (0.06P, Figure 5.13(a)) where the background had

negligible coupling to the WGM. The negligible coupling of background to the WGM

radiation is also observable in Figure 5.14 where we plot the photoluminescence spec-

tra for two different pump power intensities at 4 K.

We note here that the electron-hole pairs in the wetting layer have average

recombination times of ∼300 ps [52] or larger depending on the existence and nature

of trap states. For our low density quantum dot samples, we measured lifetimes as

long as 800 ps - 1 ns on the low energy side of the wetting layer luminescence using

the TCPC technique. Hence, the measured decay time in our case may be limited by

the lifetime of the wetting layer states that pump the quantum dot. For our specific

WGM (Q=8300, VEff = 30(λ/n)3), an ideal Purcell effect of FP = 22 is estimated
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assuming an ideal spatial match between the quantum dot and WGM.

5.4 Spectral Changes in the Quantum Dot and WGM

Emissions

Despite the fact that data displayed in Figures 5.9, and 5.13 are taken from

the same quantum, there are differences in the deduced lifetimes and Purcell effects

from these measurements. When the single excitonic transition is out of resonance

with any WGMs, single exciton lifetimes of 3.4 ns and 1.8 ns are deduced from

the measurements in Figures 5.9 and 5.13 respectively. Similarly, measurements in

Figures 5.9 and 5.13 reveal Purcell effects of 6 and 2 respectively. Hence between

these two set of measurements there is a substantial drift in quantum dot properties

and in the coupling between the WGM and the quantum dot. In this section we

discuss the changes in the quantum dot and mode properties during the six months

time interval between the two set of measurements shown in Figures 5.9 and 5.13 in

order to explain our results.

The change in the spectrum of this quantum dot with time and excitation

conditions is demonstrated by the emission spectra in Figure 5.15(a) measured under

very low excitation conditions wher biexcitonic emission is not observed. In trace

(ii), the existence of a second peak suggests a charged excitonic emission from this

quantum dot. It is probable that by highly exciting this quantum dot we have

activated a trap state that caused the charged excitonic emission. The number of

charged excitonic emission lines also changed with the excitation energy as seen in

trace (iii). Under 760 nm and 785 nm continuous wave excitation, 1 and 2 additional

charged excitonic emission lines are observed respectively. Such dependencies of the

emission spectrum to nonresonant excitation energy are known for our samples [72].

This phenomenon can provide an explaination to why we observed a factor of ∼ 2

(3.4 ns observed in Section 5.3.1 vs. 1.8 ns in Section 5.3.2) difference in the lifetime

of the X transition located at 1.3221 eV between the two set of measurements. For
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Figure 5.15: (a) Photoluminescence spectra obtained from the same quantum dot in
summer 2000 under cw excitation at 750 nm (trace (i)), in summer 2001 under cw
excitation at 760 nm (trace(ii)) and 785 nm (trace(iii) (b) Drift of mode emission
properties between summer 2000 (trace (i)) and january 2001 (trace(ii)), the whis-
pering gallery modes coupled to single exciton emission is denoted by WGM in both
cases.

the experiment reported in Section 5.3.2 (corresponding to Figure 5.15(a) trace(ii)),

the additional charge, which is probably an additional hole for this quantum dot (this

is discussed in Chapter 6, and [73]), may increase the overlap integral between the

other electron and hole in the ground state, causing an enhancement in spontaneous

emission rate. In contrast, the experiment reported in Section 5.3.1 (corresponding

to Figure 5.15(a) trace(i)) is performed in the absence of an additional charge in the

quantum dot.

Even though the change in the quantum dot emission spectrum explains the

change in the observed lifetime values, it does not explain the change in the observed

Purcell effect between the two set of experiments. This discrepancy can be explained

by the drift in the WGM properties as depicted in Figure 5.15(b). Degradation in the
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cavity properties, oxidation in the surface, dust particles would effect the resonance

emission wavelengths by small amounts that are enough to considerably drift the

mode properties. In Figure 5.15(b) two photoluminescence spectra are plotted at

very high excitation regime. At this regime, the quantum dot emission becomes very

broad and all the WGMs coupled to that quantum dot through a broad emission

spectrum become visible. From that figure it can be seen that the mode at 1.3207 eV

at trace (ii) is not necessarily the same mode as the one in 1.3218 eV in trace (i),

hence different observed Purcell effects in both situations are expected.

5.5 Inhibited Spontaneous Emission due to Microdisk

Cavities

As presented in Chapters 3 - 5, we have consistently observed single ex-

citonic transition lifetimes in the range of 2 - 4 ns from single InAs quantum dots

located in microdisk cavities. In contrast, we measured lifetimes of 900 ps for sin-

gle quantum dots located in bulk samples in agreement with the literature [33]. In

this section we intend to bring an explanation to this observation by the inhibited

spontaneous emission phenomenon.

5.5.1 Inhibited Spontaneous Emission Phenomenon

Together with the cavity induced enhancement in spontaneous emission due

to the Purcell effect, inhibited spontaneous emission (first suggested in 1981 [74])

complements the topic of modified spontaneous emission. In the Fermi-Golden rule

regime where the cavity broadening is much larger than the dipole broadening, spon-

taneous emission rate is given by:

1

τ
=

2π

h̄2
ρ(ω)E2

max〈|〈µeg · ε〉|2〉 (5.5.1)

In this equation the available optical mode density (ρ(ω)), and zero point field fluctu-

ations (Emax) together with the field polarization vector (ε) constitute the photonic
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Figure 5.16: (a) Dipole located in the center of two perfect conductor plates (b)
Dielectric sphere

environment, and they can be modified independently from the specific dipole emit-

ter. As we analyzed in Section 5.1, resonant coupling of a dipole to a high Q, low

volume cavity mode results in the enhancement of its spontaneous emission rate.

Similarly the photonic environment (ρ(ω), Emax, ε) can be modified to achieve inhi-

bition in spontaneous emission. This effect can be obtained in various ways, and can

be very powerful both for atoms and solid-state devices [75]. Let us first introduce

two textbook cases to emphasize how drastic inhibitions can be achieved in sponta-

neous emission rates. Thereafter we will discuss the spontaneous emission of a single

quantum dot located in a microdisk cavity.

i. Dipole Between Two Conducting Planes:

For a dipole placed to the middle of two parallel conductors (Figure 5.16(a)),

imposing the perfect conductor boundary conditions, the mode density for the

electric field parallel to the surface of the conducting plates (z-direction in

Figure 5.16(a)) can be found to be zero for k < π
d , λ >

d
2 . Hence it is possible

to make the available optical mode density zero by having plates separation

d < λ
2 for a z-oriented dipole. In that case no spontaneous emission is allowed.

Such experiments have been achieved using atoms [76, 77], giving inhibitions

in spontaneous emission rates by factors ∼ 20.

ii. Dielectric Sphere:
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The general solution of this problem can be found in Ref. [78]. For disk ra-

dius much smaller than the wavelength (r ¿ λ) the value of inhibition in the

spontaneous emission can be estimated by assuming the static limit having the

electrostatic boundary conditions [79]:

Ein =
3

(
nin
nout

)2
+ 2

Eout

Due to the spherical symmetry of the problem, for an arbitrary dipole orienta-

tion µeg Equation 5.5.1 becomes:

1

τsphere
=

2π

h̄2
ρ(ω)




3
(
nin
nout

)2
+ 2

Eout




2

〈|〈µeg · ε〉|2〉

ρ(ω) = ρvac(ω) =
ω2Veffn

3
out

π2c3
, Eout =

√
h̄ω

2ε0n2outVeff

⇒ 1

τsphere
=




3
(
nin
nout

)2
+ 2




2

ω3nout
3πε0h̄c3

|µeg|2

Comparing this value with the spontaneous emission rate in a uniform dielectric

with refractive index nin:

1

τuni
=

ω3nin
3πε0h̄c3

|µeg|2

an inhibition in spontaneous emission is deduced by a factor [75]:

FI =
1/τuni

1/τsphere
=




(
nin
nout

)2
+ 2

3




2

nin
nout

For the case of a GaAs (nGaAs = 3.5) sphere in the air, this ratio is FI = 79

which indicates that large inhibitions in spontaneous emission can be achieved

in solid-state systems [75].
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Figure 5.17: Slab waveguide

5.5.2 Analysis of Inhibited Spontaneous Emission in a Microdisk

Cavity

Unfortunately inhibited spontaneous emission in microdisk cavities is not

a problem which can be solved analytically as the problems in the previous section.

Exact solution of this problem requires numerical methods. However it is possible

to discuss some general intuitive reasons which give an order of magnitude approxi-

mation to the actual value of inhibition of the spontaneous emission rate.

The 200 nm thickness of our microdisk cavities is smaller than the material

wavelength (925 nm/3.4=264 nm). Intuitively, because of this small thickness alone,

inhibited spontaneous emission is expected similar to two conducting plates problem.

Considering a slab waveguide as in Figure 5.17, when the thickness d < λ
2n a z-

oriented dipole is not coupled to any of the guided modes of the slab waveguide, only

radiative tunnelling modes can be considered. Assuming dipole orientation to be in

plane (z direction in Figure 5.17) only z-component of the vacuum field is used for

the spontaneous emission rate calculation. Again making the static approximation as

in the case of the dielectric sphere, in the electrostatic boundary conditions Ez,in =

Ez,out which implies that the spontaneous emission of the dipole is:

1

τslab
=

ω3nout
3πε0h̄c3

|µeg|2

Instead of:

1

τuni
=

ω3nin
3πε0h̄c3

|µeg|2
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Figure 5.18: Finite Difference Time Domain calculations done on a microdisk, con-
sidering a radial dipole (taken with permission from Phys. Rev. A, 61, 033808
(2000)).

Hence spontaneous emission is inhibited by a factor FI = nin
nout

[80]. This factor

is 3.5 for a GaAs slab waveguide located in the air. This factor does not exactly

apply to our microdisk cavity problem because our microdisks’ thickness (200 nm)

is larger than half wavelength ( λ
2n = 132 nm), and microdisk cavity has whispering

gallery modes instead of the guided modes of a slab waveguide. However the order of

magnitude for the inhibition in the spontaneous emission can be intuitively expected

to be similar to 3.5.

Whispering gallery modes of a microdisk cavity also contribute to inhibited

spontaneous emission. In contrast to the enhancement of spontaneous emission rate

of a dipole resonantly coupled to a whispering gallery mode, when the dipole is not

in resonance with any whispering gallery modes, the available optical mode density

(ρ(ω)) is reduced resulting in the inhibition of spontaneous emission rate of the dipole.

Such an effect has been observed using atoms placed in Fabry-Perot cavities [81, 82].

Inhibition factors of 0.5 %, and ∼5 % were reported in those results when the cavity

resonance was detuned from the two-level transition.

As we noted in the beginning of this subsection, the exact amount of inhibi-
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tion in spontaneous emission rate of a dipole located in a microdisk cavity can be cal-

culated using numerical techniques [83, 84]. Finite-difference time-domain (FDTD)

analysis is done for such an exact solution. Figure 4 in Ref. [83] demonstrates an

example of enhancement and inhibition of spontaneous emission rate depending on

whether the quantum dot is in and out of resonance with whispering gallery modes

(Figure 5.18). Inhibition of spontaneous emission due to the whispering gallery

modes can also be seen in Figure 6 in Ref. [84]. In this plot spontaneous emission

of a dipole placed in a slab waveguide and microdisk cavity of same thicknesses are

plotted. For thicknesses when the dipole is out of resonance with whispering gallery

modes, the spontaneous emission rate in the microdisk cavity is smaller than the

spontaneous emission of the dipole in the slab waveguide due to the cavity-caused

inhibition in spontaneous emission.

We would like to emphasize that the variety of inhibition values we observed

in spontaneous emission rate of single quantum dots located in microdisk cavities (2

- 4 ns) is probably due to different locations of quantum dots in those cavities. De-

pending on whether a quantum dot is close to the edge of the microdisk or not,

inhibition of spontaneous emission rate becomes larger or smaller respectively. Fi-

nally we note that inhibited spontaneous emission similar to our results have been

observed in single Nitrogen-vacancy color centers [85]. When placed in a solution of

polymer as nanocrystals (n ≈ 1), their spontaneous emission has been found to be

∼2.5 times smaller than the bulk diamond (n = 2.4) case.



Chapter 6

Photon Correlation

Spectroscopy

Even though the coherence properties of quantum dot single exciton emis-

sion closely follow those of atoms, the overall spectral features of single quantum dots

are significantly more complicated. Since the size of quantum dots is roughly two-

orders of magnitude larger than those of atoms, multi-particle excitations give rise

to emission peaks with energies comparable to that of a single exciton. Of primary

importance in quantum dot spectroscopy is the biexciton state, which corresponds to

a doubly-excited quantum dot with completely filled lowest electron and hole energy

levels. When the biexciton state decays by radiative recombination, the final-state is

a single exciton state and the generated photon is shifted as compared to the single

exciton emission due to Coulomb interaction between the carriers. Biexciton emission

in quantum dot spectroscopy has been traditionally identified using the (quadratic)

pump-power dependence of the corresponding peak.

In this chapter, we demonstrate that photon correlation measurements pro-

vide a powerful tool for characterizing the multiexciton spectral features of quantum

dots. Our measurements provide a strong support for the identification of a biexciton

80
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emission peak, by demonstrating its strong correlations with the subsequent single

exciton emission [86]. We observe that biexciton intensity autocorrelation exhibits

bunching together with antibunching or only antibunching under continuous-wave

excitation depending on the excitation level. In contrast, we find strong antibunch-

ing under pulsed excitation. The large difference between the levels of antibunching

under continuous-wave and pulsed excitations points out to the importance of ex-

citation mechanism and the role of free carriers in quantum dot physics. The lack

of polarization correlation between biexciton and single exciton emissions indicates

that spin dephasing is likely to play a key role under non-resonant excitation. We

also observe that a third emission peak in quantum dot spectra exhibits strong corre-

lations with both exciton and biexciton fluorescence: we argue that these correlation

signatures suggest the identification of this additional line as a charged-exciton emis-

sion.

6.1 Analysis of a Three-Level System for Cross-Correlation

Measurements

In Chapter 3.2 auto-correlation properties of the single exciton emission

of a quantum dot were analyzed using a cascaded three-level model revealing the

photon antibunching phenomenon. It is also possible to analyze all other possible

correlations in such a cascaded three-level system. In this section we make this

analysis using rate equations in the large dephasing limit. This is aimed to be the

analytical introduction to the experimental results discussed in the remainder of

the chapter. Such an analysis considering different three-level system configurations

including the cascaded configuration is done in Ref. [87].

For a cascaded three-level system as in Figure 6.1, apart from the single

excitonic auto-correlation function calculated in Section 3.4, there are three other

correlation functions to be calculated. In their unnormalized forms these second

order photon correlation functions are:
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Figure 6.1: Three-level system

i. Biexciton auto-correlation function:

G
(2)
XX,XX(τ) = 〈σXX,X(t′)σXX,X(t′ + τ)σX,XX(t′ + τ)σX,XX(t′)〉

= 〈σXX,X(t′)σXX,XX(t′ + τ)σX,XX(t′)〉

ii. Biexciton-Exciton cross-correlation function:

G
(2)
XX,0X(τ) = 〈σXX,X(t′)σX,0X(t′ + τ)σ0X,X(t′ + τ)σX,XX(t′)〉

= 〈σXX,X(t′)σX,X(t′ + τ)σX,XX(t′)〉

iii. Exciton-Biexciton cross-correlation function:

G
(2)
0X,XX(τ) = 〈σX,0X(t′)σXX,X(t′ + τ)σX,XX(t′ + τ)σ0X,X(t′)〉

= 〈σX,0X(t′)σXX,XX(t′ + τ)σ0X,X(t′)〉

Following exactly the same steps as in Section 3.4, in the large dephas-

ing limit, these second-order correlation functions can be calculated by using the

rate equations, and the quantum regression theorem. Specifically, the following rate

equations and initial conditions are used for the solution of the three cases:

i.

d

dτ




G
(2)
XX,XX(τ)

Fi(τ)

Hi(τ)


=




0 WpXX −ΓXX

WpX −(WpXX + ΓX) ΓXX

−WpX ΓX 0







Fi(τ)

G
(2)
X,X(τ)

Hi(τ)



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G
(2)
XX,XX(τ = 0) = 0

Fi(τ = 0) = 〈σXX,XX(t
′)〉

Hi(τ = 0) = 0

ii.

d

dτ




Fii(τ)

G
(2)
XX,0X(τ)

Hii(τ)


=




0 WpXX −ΓXX

WpX −(WpXX + ΓX) ΓXX

−WpX ΓX 0







Fii(τ)

G
(2)
XX,0X(τ)

Hii(τ)




Fii(τ = 0) = 0

G
(2)
XX,0X(τ = 0) = 〈σXX,XX(t

′)〉

Hii(τ = 0) = 0

iii.

d

dτ




G
(2)
0X,XX(τ)

Fiii(τ)

Hiii(τ)


=




0 WpXX −ΓXX

WpX −(WpXX + ΓX) ΓXX

−WpX ΓX 0







G
(2)
0X,XX(τ)

Fiii(τ)

Hiii(τ)




G
(2)
0X,XX(τ = 0) = 0

Fiii(τ = 0) = 0

Hiii(τ = 0) = 〈σX,X(t
′)〉

Solutions for all three cases are depicted in Figure 6.2 for two separate power

levels, assuming ΓXX = 2ΓX , and WpXX = 2WpX . Photon antibunching together

with bunching signatures are visible in those figures. Intuitive explanations can be

readily made for those results. In Figure 6.2(a) antibunching is observed because de-

tection of a biexcitonic photon necessarily projects the system to the single excitonic

level hence prevents the immediate detection of another biexcitonic photon. Further-

more, at lower power levels the information that the system is at the single excitonic

level enhances the probability of detection of a consecutive biexcitonic photon, re-

sulting in the bunching behavior in Figure 6.2(a) trace (i). Similarly, in Figure 6.2(b)

detection of a biexcitonic photon projects the system to the single excitonic level,
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Figure 6.2: Solution of the three second order photon correlation functions ((a)

g
(2)
XX,XX(τ), (b) g

(2)
XX,0X(τ), (c) g

(2)
0X,XX(τ)) in a cascaded three-level system for pump

powers Wp1 = 0.5ΓX ,ΓX , assuming ΓXX = 2ΓX , and WpXX = 2WpX .

enhancing the probability of a consecutive single excitonic photon emission, hence

bunching is observed. Furthermore, as the pumping power is lowered, the bunch-

ing effect is increased because while the average number of excitons in the quantum

dot decreases with decreasing pumping power, the detection of a biexcitonic photon

always necessarily projects the system to the single excitonic level. Figure 6.2(c)

depicts the probability of detection of a biexcitonic photon at time τ given that a

single excitonic photon has been detected at τ = 0. Antibunching is observed in this

case because at τ = 0 the system is necessarily at the ground level. An average time

that is equal to the average recovery time of the system from the ground level to

the two-excitonic level has to elapse until a consecutive biexcitonic photon emission,

thus resulting in photon antibunching.
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6.2 Photon Correlation Spectroscopy Experiments us-

ing single Quantum Dots

In this section experimental results proving the cascaded biexciton and sin-

gle exciton emissions of a single quantum dot are presented. As well as providing a

striking agreement with the analysis in Section 6.1, these results are used to identify

several transitions in the emission spectrum of a single quantum dot as a spectro-

scopic tool. Before starting with the discussion of our experimental results, we note

that coincidence detection measurements similar to our experiments have been per-

formed using cascaded transitions in atoms where many atoms were used as the

emission source. We will discuss those experiments and compare them with our

experimental results in Section 6.3.

Figure 6.3(a) shows the power dependent photoluminescence spectra of the

single quantum dot that we analyze. At low pump powers, the single excitonic

emission peak (X1) dominates the spectrum. At higher pump powers, we observe

that two other peaks become dominant: among these, the lower energy one (XX) has

an energy (red) shift of 3.5 meV from X1 and its intensity has a quadratic dependence

on pump power; these are typical signatures for biexciton emission in self-assembled

InAs quantum dots. The third peak (X2) is red-shifted from the single excitonic peak

by about 500 µeV. All three emission peaks are resolution limited at 70 µeV, and

none of them is polarized. To ensure that X1 originates from a single quantum dot

exciton emission, we have carried out photon auto-correlation measurements where

both APDs were illuminated by X1: under continuous wave and pulsed excitation,

X1 emission was found to exhibit perfect antibunching (Figure 6.3(b)) and single-

photon source operation (Figure 6.3(c)). We have also performed time correlated

single photon counting experiments on X1, X2, and XX emissions to measure their

lifetimes. Those measurements were performed in the very low excitation regime

where the decay times of the resulting spectra were determined by the lifetimes of the

corresponding emissions (Chapter 3.2, [88]). From the measured spectra we deduced
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Figure 6.3: (a) PL spectra for the quantum dot studied in this letter for various
powers of the continuous wave diode laser at 785 nm. Indicated are the three peaks
that we focus on. With increasing powers, the dominant line is successively X1, then
X2, then XX. All lines saturate and then decrease with increasing power. Photon
correlation measurements carried out using the X1 emission, under continuous wave
(b) and pulsed (c) excitations.

lifetimes of 3.6 ns, 3.7 ns and 2.6 ns for the X1, X2, and XX emissions respectively

(Figure 6.4). The resultant ratio of τX1/τXX = 1.4 is consistent with exciton and

biexciton lifetime measurements performed on CdSe/ZnSe quantum dots [68]. We

also note that, due to the different photonic environment created by the microdisk,

the single exciton lifetime we observe (3.6 ns) is larger than typical lifetimes measured

(∼1 ns) in bulk quantum dot samples (Chapter 5).

Figures 6.5(a) and 6.5(b) show g(2)(τ) for the XX emission under continuous

wave excitation, at pump powers corresponding to X1 emission intensities that are 0.7

and 1.0 of the (exciton) saturation level, respectively. Both curves, obtained using a



CHAPTER 6. PHOTON CORRELATION SPECTROSCOPY 87

15 20 25

0.1

1
 X1,  3.6ns
 X2,  3.7ns
 XX,  2.6ns

 

 

In
te

ns
ity

 (
a.

u.
)

Time (ns)

Figure 6.4: Time-correlated-single-photon-counting measurements on X1, X2, and
XX emission lines

0.5 nm interference filter, exhibit antibunching (g(2)(0) = 0.95 in Figure 6.5(a) trace

(i), g(2)(0) = 0.6 in Figure 6.5(a) trace (ii)) with similar decay times of 1 ns. The

curve in Figure 6.5(a) trace (i) also exhibits bunching (g(2) = 1.4) that decays with

a decay time of 3.5 ns. Bunching here originates from the fact that the detection

of a photon at the biexciton transition results in the projection of the quantum dot

wave-function onto the single exciton state X1. When the average occupancy of X1

in steady-state is lower than unity, post-measurement-state has higher occupancy

in the single exciton state than pre-measurement-state, and is more likely to result

in re-excitation of the biexciton state. The analysis of the quantum dot dynamics

using three-level rate equations (Section 6.1) indicates that g(2)(τ) should indeed

exhibit bunching that decays in a timescale determined by the single exciton lifetime

of 3.6 ns which is in agreement with the experimental result (Figure 6.5(a)). This

analysis also predicts that antibunching at τ = 0 should turn into bunching in a

timescale determined by the biexciton lifetime in the low excitation regime.

When we replace the 0.5 nm interference filter by a 1 nm filter, we cannot

observe antibunching in biexciton auto-correlation measurements, even though strong
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Figure 6.5: Photon correlation measurements carried out using the XX emission,
under cw (a) (Pump power P (trace (i)), and 1.4 P (trace (ii))) and pulsed (b)
excitations.

bunching feature around τ = 0 persists. This finding highlights the importance of

broadband background radiation at biexciton energy. The fact that we continue to

observe strong bunching indicates that this background is correlated with exciton

emission, much like the biexciton emission itself. The strength of biexciton anti-

bunching depends on the pump laser wavelength but not on its intensity, provided

that the quantum dot is not well above saturation. This result is inconsistent with

our expectation that biexciton antibunching will be strongly influenced by free car-

rier density. On the other hand, the significantly stronger biexciton antibunching

that we observe under pulsed excitation (Figure 6.5(b)) suggests that the free carri-

ers may still be playing a role: we remark that under pulsed excitation, free-carriers

recombine in a time-scale that is much faster than the biexciton radiative recom-
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Figure 6.6: Cross correlation function between X1 and XX emissions under contin-
uous wave diode laser excitation at 785 nm. For the chosen pump intensity, X1 line
is well below saturation. The signal from X1, filtered by a 0.5 nm interference filter,
is sent to the start APD, while the XX line, filtered by a 1 nm filter, is sent to the
stop APD. The positive correlation (g(2) =3.4) for τ < 0 followed by the negative
correlation (g(2) =0.2) for τ > 0 is an evidence for the cascaded emission of photons.

bination time [52], and therefore their influence on biexciton dynamics is expected

to be minimal. We note here that photon antibunching in the biexciton emission

of a single InAs quantum dot under pulsed excitation has been reported by another

research group [89] as well.

Cross-correlation measurements complement the identification of the biex-

citon emission: since X1 population is enhanced as a result of the detection of an

XX photon, strong correlations between the X1 and XX emissions can be expected.

Figure 6.6 shows such a photon cross-correlation measurement, obtained by illumi-

nating the start APD by the X1 emission and stop APD by the XX emission. The

depicted quantity here is g̃(2)(τ) = 〈: IXX(t+ τ)IX1(t) :〉/(〈IX1(t)〉〈IXX(t)〉), where
IX1(t) and IXX(t) are the intensities of the X1 and XX emissions, respectively. Re-

markable features of this cross-correlation include strong antibunching for τ > 0 and

strong bunching for τ < 0 with a close to resolution-limited transition between the
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two regimes. For τ > 0, suppression of a joint X1 and XX event arises from the fact

that following the detection of an X1 photon, which projects the quantum dot onto

its ground-state, detection of an XX photon is very unlikely. Strong bunching for

τ < 0 follows from the fact that detection of an XX photon projects the quantum dot

onto the X1 state, as discussed earlier. Asymmetry in X1 and XX cross-correlation

measurements have been recently reported [90, 91]. The signature depicted in Fig-

ure 6.6 proves that the XX emission arises from the decay of the biexciton state into

the single exciton state. The strong antibunching in cross-correlation is yet another

indication that the additional broadband radiation is correlated with the X1 emis-

sion. Figure 6.7 shows power dependent second order photon correlation functions

for when XX emission is sent to start and X1 emission to stop APD, under con-

tinuous wave (Figure 6.7(a)) and pulsed excitation (Figure 6.7(b)). The increase in

the bunching level together with other power-dependent changes in decay times are

visible in this Figure.

Having identified the two principal lines in quantum dot spectrum, the next

natural question is whether photon correlation spectroscopy can tell us anything

about the origin of the X2 emission. The cross-correlation between the X2 and

XX emissions only shows antibunching (Figure 6.8(a)), indicating that while those

emissions arise from the same quantum dot, the radiative decay of the biexciton state

does not populate the X2 state. From the pump power dependent photoluminescence

spectra (Figure 6.3(a)), it can be seen that the X2 emission has a stronger pump

power dependence than X1 but saturates earlier than the XX line. This may already

suggest an identification of X2 as a charged-exciton (trion) line despite the fact that

X2-X1 energy difference is smaller than typical reported values. To provide further

evidence, we have carried out cross-correlation measurements between the X2 and X1

emissions (ḡ(2)(τ)) where the start and stop APDs were illuminated by the X2 and

X1 lines, respectively. The resulting X2-X1 cross-correlation function (Figure 6.8(b))

clearly shows asymmetric antibunching with ḡ(2)(0) = 0.3, which proves once again

that the two lines originate from the same quantum dot. The asymmetry with
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Figure 6.7: Power dependent cross correlation function between X1 and XX emissions
under (a) continuous wave and (b) pulsed excitations. XX emission is sent to start
APD while X1 emission is sent to stop APD.

fast recovery for τ > 0 is expected if X2 arises from a charged-exciton: the post-

measurement state of charged-exciton emission is a singly-charged quantum dot. We

would expect single-charge injection into the quantum dot to be much faster than

triple charge injection, which in turn determines the recovery-time for τ < 0. Given

that the X2 emission of this quantum dot is stronger than what we typically see in

other quantum dots, we could envision the presence of an acceptor or donor impurity

that increases the relative intensity of charged-exciton emission. Presence of carbon

in these samples is well known [73]. We have carried out experiments on other

quantum dots and observed identical asymmetric antibunching signatures in cross-

correlation between the fundamental exciton line and a secondary line that appears

on its red-shifted side (Figures 6.9, and 6.10). The X2-X1 line separation (∼1 meV)

for the quantum dot depicted in Figure 6.9 is similar to the quantum dot analyzed

in the first part of this section (Figure 6.3), suggesting that both of these quantum
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Figure 6.8: Cross-correlation measurements under continuous wave diode laser exci-
tation at 785 nm. (a) The X2 fluorescence is sent to the start APD while XX is sent
to the stop APD. The absence of bunching demonstrates that XX emission does not
populate the X2 state. (b) The X2 emission is sent to the start APD and the X1
emission to the stop APD. The antibunching dip shows that both transitions stem
from the same QD. The asymmetry in the dip indicates a faster recovery for the X1
state after a X2 detection.

dots have the same kind of doping which is probably an acceptor atom revealing

the quantum dot positively charged [73]. In contrast, the quantum dot depicted in

Figure 6.10 has X2-X1 line separation of 5.5 meV suggesting that this quantum dot

is negatively charged.

Here we would like to point out to a difference that is revealed from the

cross-correlation measurements we performed on three quantum dots. We observed

similar tendencies in the asymmetries obtained from X1/XX, and X2/X1 cross-

correlation measurements for all three quantum dots (Figures {6.6, 6.8(b)}, {6.9(a),
6.9(d)}, and {6.10(a), 6.10(d)}). However, X2/XX cross-correlation experiments re-

vealed different asymmetries between the quantum dots that had small X2-X1 energy

separation, corresponding to probably positive charging, and the quantum dot that
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Figure 6.9: Photon correlation spectroscopy measurements done on another quantum
dot. Photoluminescence spectrum (b), cross-correlation between (a) X1/XX, (c)
X2/XX, and (d) X2/X1 are shown.

had large X2-X1 energy separation, corresponding to probably negative charging.

Positively charged quantum dots showed smaller decay times for τ < 0 while having

larger decay times for τ > 0 (Figures 6.8(a), and {6.9(c)), whereas the negatively

charged quantum dot showed a larger decay time for τ < 0, and smaller decay time

for τ > 0 (Figure 6.10(c)). In X2/XX cross correlation measurements positively

charged quantum dots need to capture 2e-1h for τ > 0, and 1h for τ < 0, hence

we can conclude that the capture of 1h occurs within resolution limited time scales

(< 300 ps) while the capture of 2e-1h occurs within larger time scales (∼ 1 ns).

In contrast, from X2/XX measurements on the negatively charged quantum dot it

can be concluded that the capture of 2h-1e occurs within resolution limited time

scales (< 300 ps) while the capture of 1e occurs at larger time scales. This picture is
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Figure 6.10: Photon correlation spectroscopy measurements done on another quan-
tum dot. Photoluminescence spectrum (b), cross-correlation between (a) X1/XX,
(c) X2/XX, and (d) X2/X1 are shown.

self-consistent with such an ordering in carrier capture efficiencies: 1e capture is less

efficient than 1e-1h capture, and 1e-1h capture is less efficient than 1h capture. We

would like to put however our reservations to this very intuitive result: A systematic

study over many differently quantum dots needs to be done in order to reach such a

conclusion.

In summary, we have used photon auto- and cross-correlation measurements

to identify dominant spectral features of a single quantum dot, and characterize the

recombination dynamics under various excitation conditions. Given the difficulty of

accurate theoretical calculations and the richness of the quantum dot spectra which

differs significantly from one quantum dot to another, we believe that the techniques

described here will be invaluable in understanding individual quantum dots.
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Figure 6.11: Sketch of coincidence detection measurements in atomic cascades Reg-
ular three-level cascade from (solid line) a single atom, (dashed line) many atoms.

6.3 Comparison of Cascade Emission Experiments using

Atoms and Quantum Dots

So far there have been several experimental demonstrations of cascaded

emission using atoms. Three-level cascades were demonstrated using 202Hg [92],

and 40Ca [93] atoms, cascade in the emission of two sidebands of the resonance

fluorescence was also demonstrated [94]. In this section we aim to compare the

experiments performed on atomic three-level cascades with our measurements on

the biexciton - single exciton cascade in single quantum dots.

Due to small single atom trapping times, three-level atomic cascade demon-

strations were done using the luminescence coming from many atoms. In order to

predict the results of those experiments, the analysis done in Section 6.1 can be mod-

ified for N identical atoms. Following steps very similar to the steps in derivation

of Equation 3.1.21, for a cascade depicted in Figure 6.11(b), the cross-correlation

functions in the collective emission of N atoms are given as:

g
(2)
12 (τ) =

N − 1 + g
(2)
12 (τ)

N
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g
(2)
21 (τ) =

N − 1 + g
(2)
21 (τ)

N

Hence it is seen that as the number of excited atoms is increased, both antibunch-

ing and bunching signatures of the cascaded emission are reduced (Figure 6.11(a)).

Antibunching signature is effected much more severely than the bunching signa-

ture because large single-atom bunching levels (g
(2)
12 (0)) can be achieved making the

bunching effect still observable for the case of many atoms. Consider N = 100, and

g
(2)
12 (0) = 100 then the antibunching level becomes g

(2)
21 (0) = 0.99 while bunching

level is g
(2)
12 (0) = 1.99. This is the situation in cascaded emission experiments per-

formed using many atoms where bunching signature is observed with the absence of

antibunching [92, 93]. In contrast, single quantum dot experiments revealed both

antibunching and bunching phenomena in cascaded emission, this was a novel exper-

imental signature hitherto not observed in experiments using atoms [86, 90, 91].

6.4 Entangled State Generation Using the Three-Level

Cascade in Quantum Dots

It has been predicted that the radiative decay of a single quantum dot

biexciton state will result in polarization entangled state generation [53]. Specifically,

the two-photon state of a quantum dot has the form of a maximally entangled (Bell)

state:

|ψ〉 = 1√
2
(|σ+〉1|σ−〉2 + |σ−〉1|σ+〉2)

where |σ±〉i corresponds to single photon Fock states with polarizations (σ±) orthog-

onal in any basis, i = 1, 2 corresponds to the ith photon in the cascaded emission.

Such Bell states that violate ”Local Hidden-Variable Theories” have been success-

fully demonstrated using atomic cascades [95, 96, 97] analyzing cascaded emission

coming from many atoms. The experiments in Ref.s [95, 96, 97] were also performed

collecting the luminescence coming from many atoms.



CHAPTER 6. PHOTON CORRELATION SPECTROSCOPY 97

To observe the entanglement in the emission of single quantum dots, we

have measured the polarization dependence of the single exciton - biexciton cross-

correlation. Under continuous wave excitation, we have seen no evidence for polariza-

tion correlations. We believe that spin-decoherence that has been observed to occur

in nanosecond timescales for these quantum dots under non-resonant excitation is

responsible for the lack of polarization-correlation [98]. Further experiments under

different excitation conditions are needed to understand the polarization correlations

and eventually for the generation of entangled-photon states. Recently other groups

observed classical correlations between the polarizations of the biexcitonic and single

excitonic emissions, with no indication for entanglement [99, 100]. These observa-

tions were due to asymmetric quantum dots that have polarized emission in a certain

axis of asymmetry.



Chapter 7

Two-Photon Interference

Quantum information processing appears as a very fascinating application

for single photon sources due to the recent proposal of linear optics quantum compu-

tation [7]. In their proposal, Knill and coworkers demonstrated that the availability

of a single photon source enables the implementation of efficient quantum computa-

tion using only linear optical elements and efficient photo-detectors, relying heavily

on two-photon interference on a beam-splitter for realization of probabilistic quan-

tum gates and state preparation. In this chapter, we propose a scheme to obtain

two-photon interference from single photons emitted by a single quantum dot as a

first step towards the realization of linear optics quantum computation. We also

present our initial experimental results.

So far two-photon interference experiments have always been performed

using spontaneous parametric down conversion process in nonlinear crystals that

give rise to signal and idler photons having a definite quantum correlation between

them [101, 102, 103]. However, the application of this entangled photon source to

more involved quantum teleportation experiments suffer from low count rates [104].

In such experiments, the laser intensity used in pumping the nonlinear crystal is

critically low such that two-pair generation process is suppressed compared to single-

pair generation probability, while keeping the rate of single-pair generation events

98
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as large as possible, in order to efficiently perform the experiments. Number of

generated photon pairs inherently obeys to Poissonian statistics. Typical single-pair

generation rates of < 10 KHz are used in such experiments. In contrast, using

single quantum dots photon count rates up to > 100 MHz can be generated with

true sub-Poissonian statistics that ensures no two photon emission [6]. Currently

photon count rates larger than 200 KHz are achieved in our laboratory with a total

collection efficiency of ∼ 0.1 %. For practical applications this collection efficiency

can be increased up to more than 50 %. These facts showing the advantage of a single

quantum dot single photon source over the single photon generation by parametric

down conversion process motivates our proposal. In addition to linear optics quantum

computation, our proposed high efficiency two-photon entangled state generator can

find application in quantum lithography where using an N-photon entangled source,

optical resolution in lithography can be reduced to lambda/(2N) in an N-photon

absorbing medium [105].

7.1 Proposed Scheme

Currently demonstrated single photon sources using both single quantum

dots and single molecules suffer from inhomogeneous broadening. It is not exper-

imentally conceivable to obtain two separate such single photon sources emitting

identical photons as a two photon entangled state generator. Instead the photon

stream emitted from a single photon source can be modified to obtain two photon

interference.

Our proposed scheme is depicted in Figure 7.1. It relies on separating the

single photon stream in two paths by a beam splitter and combining the two paths

at two inputs of another beam splitter after introducing an optical delay to one of

the paths that is equal to pulse separation. In such a configuration, considering a

deterministic single photon source, the two paths will meet at the input of the sec-

ond beam splitter with a probability of 1/4. If the photons have identical transform
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Det.

δ = Tpulse_sep

single photon

     source

Det.

Figure 7.1: Scheme to obtain two-photon interference with a probability 1/4

limited spectral distributions, the optical delay is made exactly equal to pulse sep-

aration, and mode-matching conditions are met, two-photon interference should be

observed in the second beam splitter. Since photons emitted by single quantum dots

have spontaneous emission lifetimes of several nanoseconds (2 - 4 ns), the length of

the optical delay in the longer arm is only critical to milimeters. The experimental

evidence of two-photon interference is the absence of coincidences between the two

output channels of the second beam splitter, the photons tend to go to the same

output channel due to their bosonic nature.

7.2 Analysis of Two-Photon Interference

In a realistic scenario, the quality of two-photon interference heavily de-

pends on whether the emitted photons are transform limited or not. Considering the

single quantum dot single photon source, time-jitter and decoherence phenomena are

both very effective in causing the single photon wavefunction not to be transform

limited. We will discuss the reasons of these phenomena in single quantum dots

together with methods to prevent them in the following sections. In this section, we

aim to give a general analysis of two-photon interference considering two independent

single photon sources. We assume that the sources are identical, they are excited by
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single quantum dot

single quantum dot

excitation laser

Figure 7.2: Configuration assumed in the analysis of two photon interference: Two
independent identical single photon sources excited by the same laser field.

the same laser, and the distance between these sources and the beam splitter is the

same (Figure 7.2). This is indeed the situation in our proposal when two photons

meet in the input of the second beam splitter in Figure 7.1, under the asssumption

that δ = Tpulse sep exactly.

7.2.1 Model of a Quantum Dot for Two-Photon Interference

The rate equation model used for a single quantum dot in the previous

chapters is not convenient for this analysis, as we assume decoherence rate to be

comparable to spontaneous emission rate. We use the model illustrated in Figure 7.3

for that purpose. We assume low excitation conditions where at most one exciton is

generated inside the quantum dot. We also assume a high energy pumping level (|p〉)
that has a large dephasing rate (γp deph À (Γp,Γe, γe deph,ΩL) and a spontaneous

emission rate (Γp) comparable to the other rates in the problem. This pumping level

can be the wetting layer or GaAs substrate energy levels, or p-shell states depending

on the excitation conditions. We assume a dephasing rate (γe deph), and spontaneous

emission rate (Γe) for the quantum dot dipole.

We start from the general Lindblad form master Equation [29] for the den-

sity operator of the three-level system, we will use the assumption of highly dephased

pumping level that greatly simplifies the treatment. The master equation is given
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Figure 7.3: Model of a single quantum dot, considering finite dephasing rates.

as:

d

dt
ρ̂ =

1

ih̄
[Ĥ, ρ̂] +

Γe
2
(2σ̂geρ̂σ̂eg − σ̂eeρ̂− ρ̂σ̂ee)− γe dephσ̂ee

+
Γp
2
(2σ̂epρ̂σ̂pe − σ̂ppρ̂− ρ̂σ̂pp)− γp dephσ̂pp (7.2.1)

where Ĥ is the three-level system Hamiltonian:

Ĥ = h̄ωegσ̂ee + h̄ωpgσ̂ee + h̄ωLâ
†â+ h̄

ΩL(t)

2
(σ̂pge

−iωpgt + σ̂gpe
iωpgt) (7.2.2)

In Equation 7.2.2, we treat the laser field classically given by the Rabi frequency

(ΩL(t) =
2|µeg ·ε||Emax(t)|

h̄ ). We further assume ωpg = ωL.

Now we derive the simplified optical Bloch equations for the three-level

system using Equation 7.2.1 together with the equation for the average value of a

general observable represented by the hermitian operator Â:

〈Â〉 = Tr{ρ̂Â} (7.2.3)

The following equation can be written for 〈˜̂σpe〉:

d

dt
〈˜̂σpe(t)〉 = −γp〈˜̂σpe(t)〉+ i

ΩL

2
〈˜̂σge(t)〉

where γp = γe deph + Γe
2 is the total dephasing rate of the level |e〉, ˜̂σpe(t) =

e−iωpetσ̂pe(t) and ˜̂σge(t) = eiωegtσ̂ge(t) represent the system operators in rotating
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frame. Under the assumption γp À (Γp,Γe, γe deph,ΩL(t)), 〈˜̂σpe〉 reaches its steady

state for the time scales relevant to other operators:

d〈˜̂σpe(t)〉
dt

≈ 0⇒ 〈˜̂σpe(t)〉 ≈
iΩL(t)/2

γp +
Γe
2

〈˜̂σge(t)〉

Substituting the above equation into the Bloch equation for 〈˜̂σeg(t)〉 = e−iωegt〈σ̂eg(t)〉:

d

dt
〈˜̂σeg(t)〉 = −γe〈˜̂σeg(t)〉 − i

ΩL(t)

2
〈˜̂σep(t)〉

= −
(
γe +

Ω2
L/4

γp +
Γe
2

)
〈˜̂σeg(t)〉 (7.2.4)

Under the highly dephased |p〉 level assumption γe À ΩL(t)
2/4

γp+
Γe
2

, Equation 7.2.4 reduces

to:

d

dt
〈˜̂σeg(t)〉 = −γe〈˜̂σeg(t)〉 (7.2.5)

This is the first of the simplified Bloch equations obtained in this subsection. This

Equation 7.2.5 is identical to the case of incoherent resonant excitation of a two-level

system. Highly dephased level |p〉 has the effect of removing the coherence between

the excitation laser and the level |e〉.
Using the master Equation 7.2.1 we can write the following optical Bloch

equations for 〈σ̂pp(t)〉, 〈σ̂pg(t)〉, and 〈˜̂σee(t)〉:

d
dt〈σ̂pp(t)〉 = −iΩL(t)

2 (〈˜̂σpg(t)〉 − 〈˜̂σgp(t)〉)− Γp〈σ̂pp(t)〉
d
dt〈˜̂σpg(t)〉 = γP 〈˜̂σpg(t)〉 − iΩL(t)

2 (〈σ̂pp(t)〉 − 〈σ̂gg(t)〉)
d
dt〈σ̂ee(t)〉 = ΓP 〈σ̂pp(t)〉 − Γe〈σ̂ee(t)〉

(7.2.6)

Once again we use the highly dephased |p〉 level assumption , γp À (Γp,Γe, γe deph,ΩL(t)),

to obtain:

d〈˜̂σpg(t)〉
dt

≈ 0⇒ 〈˜̂σpg(t)〉 ≈
−iΩL(t)/2

γp
(〈σ̂pp(t)〉 − 〈σ̂gg(t)〉) (7.2.7)
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Substituting Equation 7.2.7 into Equation 7.2.6, the following set of Optical Bloch

equations can be obtained for 〈σ̂pp(t)〉, 〈σ̂ee(t)〉, and 〈σ̂gg(t)〉:
d
dt〈σ̂pp(t)〉 = −(WP (t) + ΓP )〈˜̂σgp(t)〉+WP (t)Γp〈σ̂gg(t)〉
d
dt〈σ̂ee(t)〉 = ΓP 〈σ̂pp(t)〉 − Γe〈σ̂ee(t)〉
d
dt〈˜̂σgg(t)〉 = WP (t)〈σ̂pp(t)〉 − 〈σ̂gg(t)〉+ Γe〈σ̂ee(t)〉

(7.2.8)

Where we substituted ΩL(t)
2/2

γp
by WP (t), and used the equation:

〈σ̂pp(t)〉+ 〈σ̂ee(t)〉+ 〈σ̂gg(t)〉 = 1⇒ d

dt
〈σ̂pp(t)〉+

d

dt
〈σ̂ee(t)〉+

d

dt
〈σ̂gg(t)〉 = 0

In summary we obtained the following set of optical Bloch equations for the

model depicted in Figure 7.3:

d

dt




〈σ̂pp(t)〉
〈σ̂ee(t)〉
〈σ̂gg(t)〉
〈˜̂σeg(t)〉



=




−(WP (t) + Γp) 0 WP (t) 0

Γp −Γe 0 0

WP (t) Γe −WP (t) 0

0 0 0 −γe







〈σ̂pp(t)〉
〈σ̂ee(t)〉
〈σ̂gg(t)〉
〈˜̂σeg(t)〉



(7.2.9)

The above set of equations are still the rate equations for the population densities

of levels |p〉, |e〉, and |g〉. In addition to those, we have the equation for 〈 ˜̂σeg(t)〉
representing the decay of the coherence between levels |e〉, and |g〉. It is apparent

that level |p〉 has no effect on the decoherence rate of 〈˜̂σeg(t)〉 so long as γe À ΩL(t)
2/4

γp+
Γe
2

is satisfied. Under this highly dephased assumption, level |p〉 only determines the

time-jitter, as demonstrated in the next subsections.

7.2.2 Calculation of Coincidence Detection Rate

We now aim to write the relative coincidence detection probability at the

output of the beam splitter depicted in Figure 7.2 by the help of the set of Equa-

tions 7.2.9. Consider the general beam splitter depicted in Figure 7.4 that has the

general input-output relationship for single mode quadrature field components:

 Ê+

k3
(ω3)

Ê+
k4
(ω4)


 =


 t r

r t




 Ê+

k1
(ω1)

Ê+
k2
(ω2)


 (7.2.10)
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Figure 7.4: Beam splitter

having the energy and momentum conservation relationships given as:

k1 + k2 = k3 + k4 , ω1 = ω2 = ω3 = ω4

We assume the polarization vector to be the same for all field components. Taking

the Fourier transform of both sides in Equation 7.2.10, reveals:


 Ê+

3 (t)

Ê+
4 (t)


 =


 t r

r t




 Ê+

1 (t)

Ê+
2 (t)


⇒


 â3(t)

â4(t)


 =


 t r

r t




 â1(t)

â2(t)


 (7.2.11)

â1, â2, â3, and â4 are the photon annihilation operators of the respective channels. We

assumed r, and t to be independent from ω. Using Equation 7.2.11, the unnormalized

second order coherence function between channels 3, and 4:

G
(2)
34 (t, τ) = 〈a

†
3(t)a

†
4(t+ τ)a4(t+ τ)a3(t)〉 (7.2.12)

can be written as:

G
(2)
34 (t, τ) = |r|4〈â†2(t)â

†
1(t+ τ)â1(t+ τ)â2(t)〉

+|t|4〈â†1(t)â
†
2(t+ τ)â2(t+ τ)â1(t)〉

+r2(t∗)2〈â†1(t)â
†
2(t+ τ)â1(t+ τ)â2(t)〉

+(r∗)2t2〈â†2(t)â
†
1(t+ τ)â2(t+ τ)â1(t)〉 (7.2.13)

All other terms in the expression of G
(2)
34 (τ) are equal to zero due to the assumed

input state |ψ〉 = |11, 12〉. At this stage making use of the source-field expression in
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Equation 3.2.2 we can write Equation 7.2.13 in terms of the quantum dot projection

operators revealing the equation below:

G
(2)
34 (t, τ) = |r|4〈σ̂eg2(t)σ̂ee1(t+ τ)σ̂ge2(t)〉+ |t|4〈σ̂eg1(t)σ̂ee2(t+ τ)σ̂ge1(t)〉

+r2(t∗)2〈σ̂eg1(t)σ̂eg2(t+ τ)σ̂ge1(t+ τ)σ̂ge2(t)〉

+(r∗)2t2〈σ̂eg2(t)σ̂eg1(t+ τ)σ̂ge2(t+ τ)σ̂ge1(t)〉 (7.2.14)

The subscripts 1, and 2 denote the two quantum dots. Since the quantum dots are

assumed to be identical and independent Equation 7.2.14 can be further simplified

to:

G
(2)
34 (t, τ) = (|r|4 + |t|4)〈σ̂ee(t)〉〈σ̂ee(t+ τ)〉

+(r2(t∗)2 + (r∗)2t2)|G(1)(t, τ)|2 (7.2.15)

where G(1)(t, τ) represents the unnormalized first order coherence function:

G(1)(t, τ) =
(
G(1)(t,−τ)

)∗
= 〈σ̂eg(t+ τ)σ̂ge(t)〉 (7.2.16)

The first term in the Equation 7.2.15 corresponds to the classical coincidence counts

for non-interferring photons, whereas the second term is due to the two-photon in-

terference. The first order coherence function of individual photons determines the

level of interference, e.g. the extreme case of the coherence length of each photon

being 0 corresponds to no interference between the two photons.

7.2.3 Solution of Two-Photon Interference for Single Quantum Dots

In this subsection we analyze Equation 7.2.15 by solving the internal dy-

namics of a single quantum dot using the set of Equations 7.2.9. We assume a

balanced beam splitter, r = 1√
2
, t = i√

2
, revealing:

G
(2)
34 (t, τ) =

1

2

(
〈σ̂ee(t)〉〈σ̂ee(t+ τ)〉 − |G(1)(t, τ)|2

)
(7.2.17)

We first consider the two-photon interference under continuous wave exci-

tation conditions, followed by the pulsed excitation case.
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(i)Continuous wave excitation:

For continuous wave excitation, in Equation 7.2.17 〈σ̂ee(t)〉, and 〈σ̂ee(t+ τ)〉 can be

substituted by the steady state value of the population density of level |e〉, 〈σ̂ee(t)〉ss.
G(1)(t, τ) can then be calculated by multiplying Equation 7.2.9 with ˜̂σge(t) from

the right side, and using the quantum regression theorem to calculate the two-time

averages as it was done in the calculations in the previous chapters. By this way, the

equation and initial condition below can be obtained for G(1)(t, τ):

dG(1)(t, τ)

dt
= −γeG(1)(t, τ) , G(1)(t, 0) = 〈σ̂ee(t)〉 (7.2.18)

The solution to Equation 7.2.18 is:

G(1)(t, τ) = 〈σ̂ee(t)〉e−γeτ (7.2.19)

By substituting the solution to G(1)(t, τ) into Equation 7.2.17, normalized G
(2)
34 (τ)

reads:

g
(2)
34 (τ) =

1

2

(
1− |G(1)(t, τ)|2
〈σ̂ee(t)〉〈σ̂ee(t+ τ)〉

)

=
1

2

(
1− e−2γeτ

)
(7.2.20)

Hence, for the continuous wave excitation case two-photon interference is solely de-

termined by the total dephasing in the level |e〉, γe = γe deph+
Γe
2 . The decay time of

two-photon interference is: 1
2γe

, and time-jitter caused by the level |p〉 has no effect

on the interference.

(ii)Pulsed excitation:

We now analyze two-photon interference considering a pulsed laser having small

pulse width and large pulse separation such that single photon operation from the

quantum dots is achieved (Chapter 4). In this case it is convenient to calculate the

unnormalized second order photon correlation function that is only dependent on

variable τ :

G
(2)
34 avg(τ) =

∫ ∞

0
dtG

(2)
34 (t, τ) (7.2.21)
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Figure 7.5: G
(2)
34 avg(τ) calculated using τpulse = 1/(50Γe), Γp = 100Γe, and Γe deph =

0.1Γe (dashed curve). Classical no-interference case is also plotted for normalization
(straight curve.

in its unnormalized form. In this analysis, we first calculate G(1)(t, τ) using Equa-

tion 7.2.19 for all t, and τ . G
(2)
34 (t, τ) is then calculated by substituting G(1)(t, τ)

in Equation 7.2.17. Integration of G
(2)
34 (t, τ) over all t reveals G

(2)
34 avg(τ) that corre-

sponds to the distribution of detected coincidence in the experiment. An exemplary

solution of G
(2)
34 avg(τ) is shown in Figure 7.5. G

(2)
34 avg(τ) calculated considering no

two-photon interference is also plotted in Figure 7.5 for normalization.

To observe the effect of dephasing rate (Γe deph), and time-jitter (Γp), we

calculated the normalized coincidence detection probability per pulse for various

dephasing rates and time-jitters. In its unnormalized form, the coincidence detection

probability is given as:

P34(Tpulse) =

∫ Tpulse

0
dτG

(2)
34 avg(τ) (7.2.22)

The results of the calculations are depicted in Figure 7.6 showing the strong depen-

dence of the coincidence detection rate, on γe deph, and Γp. In Figure 7.6, p34 is

normalized such that p34 = 0.5 corresponds to no two-photon interference as shown

in Figure 7.5.
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Figure 7.6: Effect of the (a) dephasing rate (γe deph), and (b) time-jitter (Γp) to
two-photon interference. p34 = 0.5 corresponds to no interference.

7.3 Dephasing in Single Quantum Dots

As denoted in the previous section, the first step in implementing our two-

photon interference scheme is to have transform limited emission from the quantum

dots. For that reason we have performed linewidth measurements on the quantum

dot emission lines using a scanning Fabry-Perot interferometer. The results of these

measurements that revealed linewidths at least 5 times larger than the transform

limited linewidth of quantum dot emission are presented in this section. We should

note that recently a transform limited quantum dot linewidth has been reported

under continuous wave p-shell excitation conditions at 2 K [106].

We have used a Scanning Fabry-Perot interferometer (Burleigh TL-0300-S-

NIR Laser Spectrum Analyzer, Free Spectral Range =15 GHz = 62 µeV, Finesse=70,

center wavelength = 950 nm) to measure the quantum dot linewidths. In the setup

plotted in Figure 7.7, the quantum dot emission is filtered using 0.5 nm, and 1 nm

interference filters, and then sent to an APD passing through the scanning Fabry-

Perot interferometer. The APD output is stored in a multi-channel scaler (Stanford

instruments model SR430) that is triggered by the Scanning Fabry-Perot ramp signal.
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Figure 7.7: Experimental setup using the Scanning Fabry-Perot Interferometer

Quantum Measured
Dot Linewidth

charged X neutral X

(ps) (µeV) (ps) (µeV)

Figures 6.3-6.8 53 12 11 60
Figure 6.9 111 5.7 18 35
Figure 6.10 98 6.5 80 8

Table 7.1: Measured linewidths of three quantum dots

After several minutes of integration the spectrum in the multi-channel scaler reveals

the linewidth information.

Under continuous wave excitation conditions using diode laser (at 785 nm),

a large variety of linewidth values ranging between 5.7 - 60 µeV were measured from

various quantum dots. Among these quantum dots, the ones in which we could clearly

identify the charged and neutral single-exciton emissions, using photon correlation

spectroscopy, had the linewidths shown in Table 7.1.

Table 7.1 demonstrates linewidth values we obtained from three quantum

dots’ charged and neutral exciton emissions under nonresonant continuous wave exci-

tation (diode laser at 785 nm). The first, second, and third quantum dots in Table 7.1

are the ones analyzed in Figures 6.3-6.8, Figure 6.9, and Figure 6.10 respectively. The

identification of the charged and neutral single exciton lines of these quantum dots

has been done using the photon correlation spectroscopy techniques as discussed in
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Figure 7.8: (a) Photoluminescence spectrum of the quantum dot under continuous
wave excitation using diode laser. Charged excitonic (X2) and excitonic (X1) emis-
sions are visible. (b) A linewidth of 5.7 µeV is measured for the X2 emission under
continuous wave excitation conditions using the scanning Fabry-Perot interferometer.

Chapter 6. We should note here that the linewidth values shown in Table 7.1 are

not representative of a general average quantum dot from our samples.

The value 5.7 µeV in Table 7.1 is the smallest linewidth value we have

been able to measure from any quantum dot under nonresonant continuous wave

excitation. This measurement together with the photoluminescence spectrum of this

quantum dot are depicted in Figure 7.8. In this excitation condition this value is

also smaller than all other linewidth values reported in the literature. For this spe-

cific charged exciton emission, lifetime (∼ 2 ns) corresponds to a transform limited

linewidth of 0.32 µeV . Hence the measured linewidth (5.7 µeV) is still mainly deter-

mined by the dephasing processes in the quantum dot, dephasing processes are ∼ 18

times faster than spontaneous emission.

Although the values in Table 7.1 are rather different from one quantum dot

to another, a general trend between charged exciton and neutral exciton linewidths

can be deduced: charged exciton emission lines consistently have smaller broadenings
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Figure 7.9: Analysis of the X2 line in Figure 7.8(a). Temperature dependent (a)
linewidth (b) emission energy, and (c) power dependent linewidth are plotted under
continuous wave diode laser excitation.

than the neutral exciton emission lines for these three cases. Such a trend has also

been observed by another research group [107]. Detailed calculations should be done

to clarify this phenomenon. However as a first reasoning, it can be argued that the

existence of an extra charge in the s-shell reduces the dephasing rate by decreasing

the interaction between the quantum dot exciton and other free carriers.

In the remaining of this section we will discuss further linewidth experi-

ments performed on the X2 line in Figure 7.8(a) that showed the smallest linewidth.

To identify the main cause of broadening, we performed power and temperature de-

pendent linewidth measurements. The results of these measurements are plotted in

Figure 7.9. The temperature dependence depicted in Figure 7.9(a) shows that the

linewidth stays constant up to 10 K and then starts increasing, hence for this quan-

tum dot, dephasing caused by lattice interaction is not important up to 10 K. In

contrast, linewidth has a strong power dependence under continuous wave excitation

conditions (Figure 7.9(c)) suggesting that free-carriers are the dominant factor de-

termining the quantum dot linewidth. Temperature dependent drift of the emission

energy is also visible in Figure 7.9(b).

We also performed linewidth measurements under pulsed excitation condi-



CHAPTER 7. TWO-PHOTON INTERFERENCE 113

500 1000 1500
0

50

100

150

200

250 FSR = 62 µeV

 

 

In
te

ns
ity

 (
a.

u.
)

Bins

Figure 7.10: Linewidth measurement of the line in Figure 7.8(a) under pulsed Ti:Sa
excitation, revealing a linewidth of 5.6 µeV.

tions in order to prevent the dephasing effects due to free carriers. As depicted in

Figure 7.10 this measurement revealed a linewidth of 5.6 µeV in the low excitation

regime. The fact that this value is still 16 times larger than the transform limited

linewidth can be explained by the trapped charges having trapping times compara-

ble to single-excitonic lifetime. We have indeed measured carrier lifetimes as large as

1 ns from some low energy states of the wetting layer; such states can be the reason

of the dephasing we observe.

7.4 Experimental Results

In this section we intend to discuss our first attempts to obtain two-photon

interference that to our dismay revealed no interference signatures. For these ex-

periments we have changed the proposed setup in Figure 7.1 in order to optimize

the experimental conditions. We have replaced the first beam splitter by a combi-

nation of polarizing beam splitter and λ
2 waveplate in the long arm in order not to

loose counts by putting polarizers at both arms. Furthermore we have placed two
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Figure 7.11: Modified form of the two-photon interference proposal

lenses with focal lengths of f = Tpulse sep/4 to the longer arm with a separation of

Tpulse sep/2 between them in order to correct for the divergence of the Gausssian

beam. The necessity of a 3.69 m (12.3 ns) long delay line makes the mode matching

conditions quite hard to satisfy using free space optics.

For the experimental configuration depicted in Figure 7.1, coincidence de-

tection probability of two non-interfering photons can be readily predicted. For

general coefficients ηshort, ηlong, ηstart, and ηstop corresponding to the total collec-

tion efficiency in the long arm, total collection efficiency in the short arm, detection

efficiency of the start APD, and detection efficiency of the stop APD respectively,

considering an ideal beam splitter, the probability of a coincidence detection at times

τ = 0, τ = Tpulsesep, τ = −Tpulsesep, and |τ | > 2Tpulsesep are given as:

P12(τ = 0) =

(
1

2
ηshort

1

2
ηstart

)(
1

2
ηlong

1

2
ηstop

)
+

(
1

2
ηlong

1

2
ηstart

)(
1

2
ηshort

1

2
ηstop

)

P12(τ = Tpulsesep) =

(
1

2
ηshort

1

2
ηstart

)(
1

2
ηlong

1

2
ηstop

)
+
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Figure 7.12: Failing results of two-photon interference experiments revealing no in-
terference under (a) pulsed and (b) continuous wave excitations.

(
1

2
ηlong

1

2
ηstart

)((
1

2
ηlong

1

2
ηstop

)
+

(
1

2
ηshort

1

2
ηstop

))

P12(τ = −Tpulsesep) =

(
1

2
ηshort

1

2
ηstart

)((
1

2
ηshort

1

2
ηstop

)
+

(
1

2
ηlong

1

2
ηstop

))
+

(
1

2
ηlong

1

2
ηstart

)(
1

2
ηlong

1

2
ηstop

)

P12(|τ | > 2Tpulsesep) =

(
1

2
ηshort

1

2
ηstart

)((
1

2
ηshort

1

2
ηstop

)
+

(
1

2
ηlong

1

2
ηstop

))
+

((
1

2
ηlong

1

2
ηstop

)
+

(
1

2
ηshort

1

2
ηstop

))

Hence for ηshort = ηlong, coincidence detection probabilities of non-interfering pho-

tons are:

P12(τ = 0)

P12(|τ | > 2Tpulsesep)
= 0.5

P12(τ = Tpulsesep)

P12(|τ | > 2Tpulsesep)
=

P12(τ = Tpulsesep)

P12(|τ | > 2Tpulsesep)
= 0.75

In the case of identical photons emitted by the single photon source, only the

coincidence detection probability at τ = 0 will be equal to 0. Therefore coincidence
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detection probabilities for interfering photons are:

P12(τ = 0)

P12(|τ | > 2Tpulsesep)
= 0

P12(τ = Tpulsesep)

P12(|τ | > 2Tpulsesep)
=

P12(τ = Tpulsesep)

P12(|τ | > 2Tpulsesep)
= 0.75

The results of our initial two-photon interference experiments are depicted

in Figure 7.12(a). In these experiments the values g(2)(0) = 0.5, and g(2)(Tpulsesep) =

0.75 are clear signatures of non-interfering photons. Figure 7.12(b) shows the results

of our two-photon interference experiments under continuous wave excitation. In this

case although we do not have a triggered single photon source, coincidences detected

at τ = 0 are still due to non-interfering single photons. In Figure 7.12(b) we also

observe no difference between the detected coincidences in co-linear and orthonormal

polarizations, this is another indications that there is no two-photon interference. As

discussed in the previous sections, the reason for our failure in observing two-photon

interference phenomenon was mainly the large dephasing rates of the quantum dot

emissions under nonresonant continuous wave and pulsed excitation conditions.

As a further step towards observing two-photon interference, we have used

the X2 emission whose linewidth properties had been extensively analyzed in Sec-

tion 7.12(b) (Figures 7.8, 7.10). We have first filtered this emission line using the

scanning Fabry-Perot interferometer in the non-scanning mode. By this way we ob-

tained a filtered linewidth of 1 µeV (corresponds to 637 ps dephasing time) at the

output of the Fabry-Perot interferometer. Despite the fact that we have been able

to increase the dephasing time up to 0.3τspon in this experiment, we still did not

observe two-photon interference.

7.5 p-shell Excitation

As it is apparent from the previous sections, nonresonant excitation condi-

tions reveal too large broadenings in the (charged, neutral) single excitonic emission
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lines, mainly because of the interaction between the free-carriers and quantum dot

carriers. To resolve this problem it is possible to locally excite a single quantum dot

by its higher excited states [108] so that no free-carriers are generated during the

excitation cycle. Such an excitation scheme has indeed revealed transform limited

linewidth from single excitonic emission of InAs quantum dots [106].



Chapter 8

Conclusion

As pointed out many times in this thesis, during our research we found

out the convenience of single self-assembled InAs quantum dots for quantum optical

applications. Due to their size variations, charging effects, lattice interactions, it

is rather difficult to predict individual quantum dots’ properties to the utmost de-

tail. However, as we demonstrated in this work, prototype two-level, and three-level

systems exist in quantum dots, and they are experimentally easy to access with a

regular cryogenic micro-photoluminescence setup. Quantum dots naturally do not

have trapping requirements as atoms. In this concluding chapter we comment on

some main discussions faced during this research.

8.1 Cavity-QED Experiments

Cavity-QED using quantum dots still stands as a topic in its infancy. Sev-

eral problems have to be overcome before a strongly coupled microcavity - quantum

dot system can be investigated. Such a strong coupling cavity-QED regime is rou-

tinely achieved in atomic cavity-QED experiments [109]. In those experiments, atoms

cooled in a magneto-optical trap are dropped to a high finesse Fabry-Perot cavity,

allowing for some atoms to pass through the cavity field maximum. As a result, when

118
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passing through the field maximum, some atoms strongly interact with the cavity

mode that is resonantly tuned to the atomic transition.

The first obstacle to overcome in order to achieve strong coupling using

InAs quantum dots is spatial positioning of individual quantum dots. The quantum

dots we are reporting in this thesis are randomly distributed in plane, with a certain

adjustable density. This is not preferable for cavity-QED analysis due to the fact

that the placement of the quantum dot to the field maximum is essential to observe

maximum cavity - quantum dot coupling. Hence, in order to ensure the spatial

overlap, quantum dots should be placed at specific locations on the sample, and the

alignment of the semiconductor microcavities should be done accordingly. A next

generation of quantum dots that are self-assembled in ordered fashion can be used

for this purpose in future experiments [110].

A robust tuning method is also needed to tune either the quantum dot or

cavity mode energies over relatively large ranges without changing the properties of

the cavity and the quantum dot. In our experiments we have achieved such a tuning

by changing the temperature. This method provides a limited range of ∼ 3 meV

tunability between 4 - 50 K. Even though the lifetime of the quantum dot transition

is shown to be constant in that temperature range (Chapter 5), the linewidth of

the quantum dot transition increases with increasing temperature (Chapter 7). This

would cause a problem for investigating coupling to very high quality cavity modes.

Better tuning methods that have weaker effects on the quantum dot and cavity

properties can be investigated for this purpose. Changing the quantum dot energy

by using the AC stark effect, or changing the mode energy by applying strain to the

microcavity can be such solutions.

In the end of these comments on cavity-QED using quantum dots, we would

like to discuss the inhibited spontaneous emission phenomenon. In our experiments,

we demonstrated that quantum dots located in thin microdisks have larger lifetimes

due to inhibited spontaneous emission. This was an effect we were not particularly

looking for at the beginning. Our experiments revealed inhibition factors of 2 − 4
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which is approximately equal to nGaAS , in agreement with a radially oriented dipole

located in a thin (d < λ/2) slab waveguide. We believe this inhibited spontaneous

emission phenomenon is itself an interesting field of study. By making systematically

smaller semiconductor structures inhibition effects can be investigated, inhibition

factors as large as 80 can be expected from GaAs based semiconductors. It can even

be imagined to locate the quantum dots in the middle of two conductors in order to

observe inhibition factors larger than 80.

8.2 Two-Photon Interference Experiments

Our two-photon interference experiments did not reveal successful results

mainly due to the large linewidths of the single excitonic emission under nonresonant

excitation conditions. Large linewidths observed under nonresonant continuous wave

excitation conditions can be explained by dephasing caused by free carriers. However

the effect of free carriers on the linewidth is expected to be smaller under nonresonant

pulsed excitation. That is mainly due to the fact that, free carriers have much smaller

lifetimes than the ground state carriers, hence the recombination of ground state

excitons should be less effected by those carriers. The fact that under nonresonant

pulsed excitation we observed linewidths as large as the linewidths we observed under

nonresonant continuous wave excitation conditions can be due to the interaction of

ground state carriers with trapped charges in some nearby trap states that causes

spectral diffusion of the emission lines. The fact that we have measured carrier

lifetimes as large as 1 ns in the low energy states of the wetting layer supports

such an explanation. Furthermore, from our two-photon interference experiments we

can deduce that the states responsible for broad single-excitonic emission probably

have trapping times < 10 ns. If the trapping times were larger (> 10 ns), the

broad single-excitonic emission lines would probably not prevent the observation of

two-photon interference phenomenon. However, we cannot disregard other possible

sources that failed our two-photon interference experiments.
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Hu, and A. Imamoğlu, Science 290, 2282 (2000).

[7] E. Knill, R. Laflamme, and G. J. Milburn, Nature (London) 409, 46 (2001).

[8] M. A. Kastner, Phys. Today 72, 24 (1993).

[9] H. Drexler, D. Leonard, W. Hansen, J. P. Kotthaus, and P. M. Petroff, Phys.

Rev. Lett. 73, 2252 (1994).

[10] D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, Science

273, 87 (1996).

[11] A. Zrenner, L. V. Butov, M. Hagn, G. Abstreiter, G. Böhm, and G. Weimann,
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Appendix A

Calculation of g
(2)(τ )

In this appendix a general procedure to calculate second order correlation

functions under continuous wave excitation is explained [29]. A single two-level sys-

tem is investigated under little and severe dephasing conditions, then the procedure

applied to a single two-level system is generalized to a general many-level emitter.

A.1 Two-Level System with Little Dephasing

Considering a general single two-level emitter that has spontaneous emis-

sion, and other dephasing mechanisms, excited nonresonatly with a small detuning

(Figure A.1), the Hamiltonian of the system is:

Ĥ = h̄wegσ̂ee + h̄wLâ
†â+

∑

k

h̄wkâ
†
k
âk +

∑

k

h̄gk(â
†
k
σ̂ge + σ̂egâk) + h̄g(â†σ̂ge + σ̂egâ)

Here a and â† represent the photon annihilation and creation operators respectively

while σ̂ge = |g〉〈e| and σ̂eg = |e〉〈g| are atomic projection operators. gk and g

correspond to the coupling strength between the two-level emitter and the vacuum

mode k, and the laser field respectively. k is in general a vector quantity, it is

reduced to k for simplicity, polarization of the vacuum modes is also contained in k.

In the rotating frame, ˜̂σeg = e−iwLtσ̂eg, and ˜̂σge = eiwLtσ̂ge after using the Markov

approximation, considering a classical single mode laser field (γL << γtot,Γspon) the
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Figure A.1: Laser driven two-level emitter

time evolution of the system operators are given as:

d

dt




˜̂σeg(t)
σ̂ee(t)− σ̂gg(t)

˜̂σge(t)


=




i∆w − γtot −i
ΩL

2
0

−iΩL −Γspon iΩL

0 i
ΩL

2
−i∆w − γtot







˜̂σeg(t)
σ̂ee(t)− σ̂gg(t)

˜̂σge(t)




+




f†(t)

2g(t)− Γspon

f(t)


 (A.1.1)

where ∆w = weg − wL, γtot =
Γspon

2 + γdeph, and h̄ΩL = 2h̄g = 2〈er · D〉 =

2|µeg · ε||Emax| denote laser detuning, coherence dephasing rate, and the Rabi fre-

quency respectively. µeg = 〈e|er|g〉 is the dipole matrix element, Emax maximum

field intensity per photon, and ε field polarization vector. The functions f(t), and

g(t) correspond to fluctuation terms as a result of the dissipation induced by the

spontaneous emission. f(t), g(t), and Γspon are given by:

f(t) = −i
∑

k

gkâk(0)(σ̂gg(t)− σ̂ee(t))e−i(wk−wl)t

g(t) = i
∑

k

gkâ
†
k(0)

˜̂σge(t)ei(wk−wl)t − i
∑

k

gk ˜̂σeg(t)âk(0)e−i(wk−wl)t

Γspon
2

=
∑

k

g2k

∫ t

−∞
dt′ei(wk−wl)(t−t

′)
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Equation A.1.1 reduces to the Bloch equations when the average over the dissipative

modes is taken, using 〈f(t)〉 = 〈g(t)〉 = 0:

d

dt




〈˜̂σeg(t)〉
〈σ̂ee(t)〉 − 〈σ̂gg(t)〉

〈˜̂σge(t)〉


=




i∆w − γtot −i
ΩL

2
0

−iΩL −Γspon iΩL

0 i
ΩL

2
−i∆w − γtot







〈˜̂σeg(t)〉
〈σ̂ee(t)〉 − 〈σ̂gg(t)〉

〈˜̂σge(t)〉




+




0

−Γspon

0


 (A.1.2)

The unnormalized second order correlation functionG(2)(τ) = 〈σ̂eg(t′)σ̂ee(t′+
τ)σ̂ge(t

′)〉 can be obtained from Equation A.1.1 by multiplying with σ̂eg(t
′) from left

and σ̂ge(t
′) from right, and taking the average over all dissipative modes. Quantum

Regression Theorem reveals 〈σ̂eg(t′)f(t)σ̂ge(t′)〉 = 〈σ̂eg(t′)g(t)σ̂ge(t′)〉 = 0. Introduc-

ing the variable τ = t− t′, the equation becomes:

d

dτ




G̃eg(τ)

Gee(τ)−Ggg(τ)

G̃ge(τ)


=




i∆w − γtot −i
ΩL

2
0

−iΩL −Γspon iΩL

0 i
ΩL

2
−i∆w − γtot







G̃eg(τ)

Gee(τ)−Ggg(τ)

G̃ge(τ)




+




0

−Γspon〈σ̂ee(t
′)〉

0


 (A.1.3)

in the above equations

G̃eg(τ) = 〈σ̂eg(t′)˜̂σeg(t)σ̂ge(t′)〉

Gee(τ)−Ggg(τ) = 〈σ̂eg(t′)(σ̂ee(t)− σ̂gg(t))σ̂ge(t′)〉

G̃ge(τ) = 〈σ̂eg(t′)˜̂σge(t)σ̂ge(t′)〉

Assuming that the correlation functions are calculated after the system reached its

steady state, in Equation A.1.3 〈σ̂ee(t′)〉 can be replaced by its steady-state value,

and the initial values for the equation are (at t=t’):

G̃eg(τ = 0) = 〈σ̂ee(t′)〉

Gee(τ = 0)−Ggg(τ = 0) = 0

G̃ge(τ = 0) = 0
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Figure A.2: Photon antibunching in resonance fluorescence

G(2)(τ) = Gee(τ) = 〈σ̂eg(t′)σ̂ee(t′+τ)σ̂ge(t′)〉 can then be calculated using the solution

for Gee(τ)−Ggg(τ) and the closed system relationship:

〈σ̂ee(t)〉+ 〈σ̂gg(t)〉 = 1⇒ Gee(τ) +Ggg(τ) = 〈σ̂ee(t′)〉.

An examplary simulation of Equation A.1.3 is shown in Figure A.2. In that Figure,

due to the coherent nature of the excitation, Rabi oscillations are apparent together

with the dip around τ = 0 which is the signature of photon antibunching.

A.2 Dephased Two-Level System

For a two-level system in which coherence dephasing rates are much larger

than the Rabi frequency (γtot >> ΩL),
d˜̂σeg(t)
dt =

d˜̂σge(t)
dt ≈ 0, the Bloch equations

become simple rate equations:

d

dt


 〈σ̂ee(t)〉
〈σ̂gg(t)〉


 =


 −Γspon −

Ω2
L

γtot

Ω2
L

γtot

Γspon +
Ω2
L

γtot
− Ω2

L

γtot




 〈σ̂ee(t)〉
〈σ̂gg(t)〉


 (A.2.1)

After application of quantum regression theorem as in Section A.1, the differential

equation for G2(τ) reads:

d

dt
G(2)(τ) = −(Γspon +

Ω2
L

γtot
)G(2)(τ) +

Ω2
L

2γtot
〈σ̂ee(t′)〉
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substituting 〈σ̂ee(t′)〉 = 〈σ̂ee(t′)〉ss =

Ω2
L

2γtot

Γspon+
Ω2
L

γtot

solving for the initial condition

G(2)(τ = 0) = 0, the normalized second order correlation function is found to be:

g(2)(τ) = 1− e−(Γspon+
Ω2
L

γtot
)τ

A.3 Comments on the Calculation of Second Order Cor-

relation Functions

The general procedure outlined in previous sections can also be applied to

a general single emitter that has more than two-levels. It suffices to write the Bloch

equations for a non-dephased emitter, or rate equations for a dephased emitter,

and then obtain the correlation functions by multiplying from left and right with

appropriate density matrix elements using the quantum regression theorem, and

solve the new set of equations by substituting the initial conditions for density matrix

elements with their steady state values, under the condition that the system has been

turned on for long enough period of time. Hence, for a general dephased system, the

problem becomes the analysis of the evolution of the system from the ground level

up to its steady state, the relevant time scales are therefore the recovery times of the

system from the ground state.



Appendix B

Jaynes-Cummings Hamiltonian

In this appendix the basic properties of the strong coupling between a two-

level emitter and a cavity mode are discussed under the idealized conditions that

assumes no cavity decay and no spontaneous emission. The Hamiltonian of the

system to be studied is (Figure 5.1):

Ĥ = h̄ωegσ̂ee + h̄ωcâ
†â− ih̄g(σ̂egâ+ â†σ̂ge) (B.0.1)

which is the Jaynes-Cummings Hamiltonian. The coupling constant g is given as:

h̄g = h̄Ωc

2 = 〈er · D〉 = |µeg · ε||Emax|, where µeg = 〈e|er|g〉 is the dipole matrix

element, Emax maximum field intensity per photon, and ε field polarization vector.

In the remaining part of this appendix we solve for the Rabi oscillations and normal

mode splitting phenomena which are the main signatures of a strongly coupled dipole

- cavity system, we also introduce the dressed state formalism. At the end of the

appendix we also introduce the AC Stark effect.

B.1 Rabi Oscillations

In order to see the Rabi oscillations, it is convenient to start from the eigen-

functions of the noninteracting part of the Jaynes-Cummings hamiltonian. These

135
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Figure B.1: Strongly coupled dipole and a cavity mode

eigenfunctions are |g, n〉, and |e, n〉 and they are called the bare states. The interac-

tion hamiltonian:

Ĥint = −ih̄g(σ̂egâ+ â†σ̂ge)

gives nonzero matrix elements 〈i|Hint|j〉 only between the eigenstates |g, n+1〉, and
|e, n〉 for n=0,1,2,... Hence in an energy level diagram as shown in Figure B.2 only

the states at the same manifold are coupled with each other. Starting from the

time-dependent wave function:

|ψ(t)〉 = an(t)e
−i(nωc+ωeg)t|e, n〉+ bn(t)e

−i(n+1)ωct|g, n+ 1〉 (B.1.1)

Substituting Equation B.1.1 into Schrödinger equation, coupled amplitude equations

below are obtained:

ih̄
d

dt


 an(t)

bn(t)


 =


 0 ei∆ωt〈e, n|Hint|g, n+ 1〉
e−i∆ωt〈g, n+ 1|Hint|e, n〉 0




 an(t)

bn(t)




=


 0 −iei∆ωth̄g

√
n+ 1

ie−i∆ωth̄g
√
n+ 1 0




 an(t)

bn(t)




where ∆ω = ωeg − ωc. Switching to the rotating frame ãn(t) = an(t)e
−i∆ω

2
t, and

b̃n(t) = bn(t)e
i∆ω
2
t, the equations become:

d

dt


 ãn(t)

b̃n(t)


 =


 −i∆ω2 −g

√
n+ 1

g
√
n+ 1 i∆ω2




 ãn(t)

b̃n(t)



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Figure B.2: Bare states and dressed states picture

These equations have the sinusoidal solution for the arbitrary initial conditions

an(0) = 1, bn(0) = 0:

ãn(t) = cos(Ωnt)

b̃n(t) = sin(Ωnt)

where

Ωn =

√(
∆ω

2

)2

+ g2(n+ 1) (B.1.2)

Hence, in each manifold Rabi oscillations with angular frequency equal to Ωn is

observed. In the special case, when the average number of photons in the cavity

mode is less than 1, the Rabi oscillations are called vacuum Rabi oscillations.

B.2 Normal Model Splitting

In the strong coupling regime, the eigenenergies of each manifold is split

by a certain value. This can be analyzed by diagonalizing the Jaynes-Cummings
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hamiltonian. Starting from the bare states of the nth manifold given in Equa-

tion B.1.1, and once more introducing the rotating frame ãn(t) = an(t)e
−i∆ω

2
t, and

b̃n(t) = bn(t)e
i∆ω
2
t:

Ĥ|ψ(t)〉 = En|ψ(t)〉

⇒

 h̄(nωc +

ωeg+ωc
2 + ∆ω

2 ) h̄g
√
n+ 1

h̄g
√
n+ 1 h̄(nωc +

ωeg+ωc
2 − ∆ω

2 )




 ãn(t)

b̃n(t)


 = En


 ãn(t)

b̃n(t)




⇒ En± = En0 ± h̄Ωn

where Ωn is the Rabi frequency given in Equation B.1.2, and En0 = h̄(nωc+
ωeg+ωc

2 ).

Giving the general eigenfunctions:

|n+〉 = sinθn|e, n〉+ cosθn|g, n+ 1〉

|n−〉 = cosθn|e, n〉 − sinθn|g, n+ 1〉

where:

cos2θn = −∆ω

2Ωn

sin2θn =
g
√
n+ 1

Ωn

for ∆ω = 0 the eigenfunctions reduce to:

|n+〉 = 1√
2
(|e, n〉+ |g, n+ 1〉)

|n−〉 = 1√
2
(|e, n〉 − |g, n+ 1〉)

B.3 AC Stark Effect

We can replace the cavity field in the previous sections by a laser field, and

analyze the AC Stark effect in resonance fluorescence. This is the effect of changing

the emission energy of a two-level system by a nonresonant intense laser field. Its
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analysis relies on the energy eigenvalues of the Jaynes-Cummings Hamiltonian. For

the 0th manifold in the dressed atom picture:

E± = Emiddle ± h̄Ω0

where Emiddle = h̄(
ωeg+ωL

2 ), and Ω0 =

√(
∆ω
2

)2
+ g2. For large detunings, ∆ω

2 À g,

the energy eigenvalues are approximately equal to:

E+ = h̄

(
ωeg +

2g2

∆ω2

)

E− = h̄ωL

Hence the two-level system’s transition energy is increased by 2g2

∆ω2
, which is called

the AC Stark shift.


