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Abstract: Trajectories of individual molecules moving within complex environments such as cell cytoplasm and
membranes or semiflexible polymer networks provide invaluable information on the organization and dynam-
ics of these systems. However, when such trajectories are obtained from a sequence of microscopy images, they
can be distorted due to the fact that the tracked molecule exhibits appreciable directed motion during the
single-frame acquisition. We propose a new model of image formation for mobile molecules that takes the
linear in-frame motion into account and develop an algorithm based on the maximum likelihood approach for
retrieving the position and velocity of the molecules from single-frame data. The position and velocity
information obtained from individual frames are further fed into a Kalman filter for interframe tracking of
molecules that allows prediction of the trajectory of the molecule and further improves the precision of the
position and velocity estimates. We evaluate the performance of our algorithm by calculations of the
Cramer-Rao Lower Bound, simulations, and model experiments with a piezo-stage. We demonstrate tracking of
molecules moving as fast as 7 pixels/frame (12.6 pwm/s) within a mean error of 0.42 pixel (37.43 nm).
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INTRODUCTION

The ability to follow in space and time selected individual
molecules in complex environments, surrounded by mil-
lions of other molecules, has opened up new paths toward
understanding the basic principles of fundamental chemical
and biological processes. Current single-molecule experimen-
tal work covers a broad spectrum of research areas ranging
from the study of intracellular and membrane transport in
living cells and model systems (Pralle et al., 2000; Schutz
et al., 2000; Kues et al., 2001) through the single-molecule
chemistry (Schmidt et al., 1996; Ho, 2002) to the analysis of
mechanical properties of molecules (Evans, 2001; Pampa-
loni et al., 2006). The key advantage of single-molecule
observations is the possibility to obtain the distribution of
various behaviors within a certain molecular population.
This enables clear identification of functionally distinct
molecular subpopulations that would be otherwise masked
by an ensemble-averaged measurement (Yorulmaz et al.,
2009; Hoffmann et al., 2011).

High-sensitivity and high-resolution fluorescence micros-
copy is one of the very few techniques that can provide
details about the organization and dynamics of complex
material systems (e.g., cell cytoplasm and membranes or
semiflexible polymer networks) on the single molecule level
under relevant environmental conditions (Saxton & Jacob-
son, 1997; Moerner, 2007; Joo et al., 2008). It involves
recording of a movie from a sample, where single fluores-
cent molecules serve as probes of their environment or
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tracers of other chemically attached molecules. Upon deter-
mining locations of the single molecules in each individual
frame, and relating these to the position information from
other frames, one can obtain the trajectories of single mol-
ecules in the sample. This procedure is commonly referred
to as single molecule tracking (SMT).

The main advantage of SMT over other single molecule
techniques lies in the combined spatial and temporal infor-
mation it provides. The temporal part of this information is
fairly reliable with contemporary electronics. The spatial
part, on the other hand, requires careful analyses, due to
limited optical resolution and signal levels. This has been
addressed either in the more general framework of particle
tracking (Cheezum et al., 2001; Thompson et al., 2002;
Anthony & Granick, 2009), or by specifically considering
single molecules with an emphasis on accuracy (Ober et al.,
2004), or both accuracy and speed (Smith et al., 2010).
Among algorithms suitable for SMT, direct Gaussian fitting
(Cheezum et al., 2001) with a maximum likelihood estima-
tor (MLE) (Abraham et al., 2009, 2010) was found to be the
most accurate one.

The estimated performance can be enhanced by a bet-
ter representation of the data generation process. A good
example of this has been demonstrated in Ober et al. (2004)
and Smith et al. (2010), where the discrete and independent
nature of the photon emission event was put into use to
develop a novel imaging model based on Poisson statistics.
Their analyses, however, considered stationary molecules
only.

In this article we apply the same approach to molecules
in motion. To the best of our knowledge, all of the present
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tracking algorithms ignore a molecules’ motion within one-
frame time and fit the data with the point spread function
of a stationary emitter. We follow an alternative method and
use a new imaging model that also takes into account the
motion of the molecule during the exposure time of a
frame. Since this extended model better represents the real
imaging process, it is expected to yield more accurate posi-
tion estimates for a moving molecule. As inherently includ-
ing motion, the model also allows the molecules’ velocity to
be estimated from single frame data.

Incorporating the in-frame motion of molecules into
the image formation model has been independently ad-
dressed in a very recent study through Cramer Rao lower
bound (CRLB) calculations (Wong et al., 2011). Our work is
different than this study mainly in recognizing the signifi-
cance of the mid-frame-time position of a molecule. Using
CRLB calculations and simulations, we demonstrate that
the mid-frame-time position is a very convenient parameter
for accurately describing the trajectory of a molecule. We
subsequently exploit this observation to propose an algorith-
mic framework for tracking.

The tracking algorithm feeds the position and velocity
estimates of individual frames into a Kalman filter, as has
been suggested by others in studies with particles (Genove-
sio & Olivo-Marin, 2003; Smal et al., 2008; Wu et al., 2010).
The addition of Kalman filtering into the SMT algorithm
allows an optimal combination of the information extracted
from multiple frames for more accurate prediction of the
tracked molecule position in the next frame of the recorded
image stack. This is important for a correct identification of
the selected molecule among other molecules that might be
present in the field of view and that might possibly cross the
trajectory of the selected molecule. Moreover, Kalman filter-
ing can improve the precision of the single-frame estimates
of the molecule position and velocity if appropriate values
of the process-associated and measurement-associated noise
levels are provided (Wu et al., 2010).

Using simulated and experimental data, we demon-
strate that our extended imaging model indeed improves
the precision of the SMT in comparison with the standard
algorithms that neglect possible directed motion of the
molecule during the image acquisition.

MATERIALS AND METHODS

Imaging Model

We extend the imaging model introduced in (Ober et al.,
2004) to molecules in motion. Our model is illustrated in
Figure 1. The motion of a molecule within 1 frame expo-
sure time, T, is assumed to be a uniform translational
motion from an initial position (xy, y,) at the beginning of
the exposure to a final position at the end of the exposure.
The position at an arbitrary time ¢ is denoted by x, y, and
the (constant) velocity components of the uniform motion
are denoted by (v,v,). The whole motion of a molecule
throughout the movie, the molecule trajectory, is thus rep-
resented as a piecewise linear function of x, y versus t. For
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Figure 1. Description of the assumed image formation model.

reasons to be explained in the Algorithm section, we also
define the midframe position components as x, = x, +
v, T/2, and y. = yo + v,T/2. All of these position and
velocity components are defined in the sample plane. Their
corresponding values in the image plane are obtained by
multiplying by the magnification, M.

The image of the sample develops progressively as the
emitted photons land on the camera chip. The photons are
assumed to be originating either from the imaged molecule,
or the background. Both sources are assumed to emit in the
form of homogeneous Poisson processes denoted by q(t)
and g,,(t) with respective (constant) rates of Ay and Ay,.
Landing of emitted photons on the camera chip is described
by the point spread function g(x, y), which we approximate
by a two-dimensional Gaussian function as is well estab-
lished in tracking of subwavelength particles.

Parameters of the described model and their units are
tabulated in Table 1. We use two alternative unit systems
corresponding to the sample and image spaces. When
expressed in sample units, the parameter values remain
unchanged under different exposure times. The model
parameters are estimated from single frame data as de-
scribed in the Algorithm section.

Simulations

We characterized the performance of our imaging model
first by simulations, as they provide fully controlled imaging
conditions. Simulated image of a moving molecule was
generated by accumulating individual photons emitted by
that molecule in the camera pixels. Each photon had three
accompanying data: (1) random emission time, (2) emission

Table 1. Parameters of the Described Imaging Model and Their
Units in the Sample and Image Spaces.

Parameter Sample Image

X0> Yo m pixel

Uy, Uy m/s pixel/frame

Ao photons/s/molecule counts/frame/molecule
Apg photons/s/pixel counts/frame/pixel




position in the sample space, and (3) landing position in the
image space. Random numbers corresponding to times
elapsed between subsequent emitted photons were drawn
from an exponential distribution with parameter 1/Ay. The
unique emission times of the photons were then given by
the cumulative sum of the times between subsequent pho-
tons. This was continued until the emission times reached
T. The emission positions were given by the position of the
molecule at the time of emission. This depends on the
trajectory of the molecule. For each photon, its landing
position on the camera chip was determined by randomly
drawing a single value from a normal distribution with
mean equal to the emission position and width to the
theoretical point spread function. The landing positions
were then assigned to pixels to yield the final image.

Experiments

To test our model experimentally, we carried out tracking of
single molecules immobilized in a polymer film. To this end
we spin-coated a thin film of poly(methyl methacrylate)
(Aldrich 201033; Aldrich, St. Louis, MO, USA) doped with
well-separated terrylene dye molecules onto glass coverslips.
Prior to spin coating, the coverslips were cleaned with a
UV-O cleaner [Jelight Company (Irvine, CA, USA), Model:
42] for 10 min. This sample was then mounted onto a
piezo scanner [Physical Instruments (Karlsruhe, Germany),
stage: P-733.3DD, controller: E-509.C3A] and moved with a
known trajectory generated by a multipurpose data acqui-
sition (DAQ) card [National Instruments (Austin, TX, USA)
PCle-6363]. The same card was also used to read the
position feedback of the stage (at 10 kHz). Wide-field
imaging was done in the standard way, with a NA = 1.49 oil
objective [Nikon (Tokyo, Japan), TIRF Apochromat], 178 X
total magnification, and an electron multiplying charge-
coupled device (EM-CCD) camera with pixel size of 16 wm
[Hamamatsu (Hamamatsu City, Japan) C9100-13]. The
point spread function of the setup was determined from
stationary single molecule images and corresponded to o =
1.2 pixel =~ 108 nm, when approximated with a Gaussian
function. This o value has been used in analyzing recorded
movies. The camera was operated at its 11 MHz/pixel clock
rate mode, with an EM gain of 255, and was externally
triggered by the DAQ card, so that driving the piezo,
reading its sensors, and image acquisition were all done in
synchronization. Excitation was done with a green diode
laser of ~10 mW power and a suitable dichroic mirror
(Chroma z532/1064rpc; Chroma Technology Corp., Bellows
Falls, VT, USA). Fluorescence was further separated from
excitation using notch (Chroma ZET532NF) and band-pass
(Chroma HQ605/90M) filters.

Since our imaging model is based on photon numbers,
obtaining its parameters from an image requires a conver-
sion from pixel counts to photon numbers. This is done
according to the relation:

(N/mage — Ndark 'y 5 Conversionfactor

counts counts

N otons = . . > 1
Fhot Analoggain X EMgain X Q.E. W
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where Nporons 18 the number of photons that arrives to the
pixels, N/ are the pixel values of the image, N9k ~are
the pixel values in the absence of illumination, and other
quantities are the fixed or adjustable specification param-
eters of the camera (Hamamatsu, 2009). The distribution of
the pixel values in a dark image was so narrow that we took

Ndark "as a constant equal to the mean dark pixel value.

ALGORITHM

Our SMT algorithm can be considered as a low- and high-
level analysis of a recorded movie. The low-level analysis
works on an individual frame and determines the position
of the tracked molecule in that frame. The high-level analy-
sis fuses the position information from individual frames to
improve the localization precision and accuracy, and to
obtain the resulting trajectory.

We treat the low-level analysis as an estimation prob-
lem, where the unknown parameters of the imaging model
(described in Table 1 in the Methods section) are estimated
from the image of the tracked molecule. Since there are
typically many molecules in a frame, a region of interest,
that we call window, has to be defined around the tracked
molecule. The estimation algorithm accepts the window as
an input and estimates the model parameters using the
maximum likelihood approach.

Defining the window of the estimation algorithm is
handled by the high-level analysis. For the first frame, the
window is readily defined when the user specifies the mol-
ecule to be tracked. For subsequent frames, the window
position (size is kept fixed) must be renewed so as to enclose
the moving molecule. This requires that the high-level analy-
sis must have a predicted estimate of the molecule position,
before the low-level analysis can actually estimate it. This
results in a recursive estimation-prediction cycle, for a pre-
diction must also depend on previous estimates. The Kal-
man filtering technique of statistical estimation theory is a
perfect match for such recursive data processing problems
and forms the basis of our high-level algorithm. Besides
being a prediction tool for placing the window in the next
frame, Kalman filtering also corrects the noisy position
estimate of the current frame.

In the following subsections, we provide the details of
our in-frame estimation (low-level) and Kalman filtering
(high-level) algorithms. We also discuss the performance of
the in-frame estimation.

Maximum Likelihood Approach for In-Frame
Parameter Estimation

The MLE is one of the most popular approaches in estima-
tion, which has some desired optimality properties (Kay,
1993; Abraham et al., 2009). The application of this ap-
proach requires that the joint probability mass function
(pmf) of the measured pixel values m,,...,my should be
derived as a function of the unknown parameters
X0> Y0s UssUys Ao, A Of the model described in the Methods
section.
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The stochastic nature of a photon detection event
brings an unavoidable uncertainty to the mapping between
the image and sample planes, and requires a probabilistic
interpretation. The probability py, that a photon emitted at
x’,y" in the sample plane lands on a pixel k of the chip, is
defined as

pr(xy") =f glx—x\y—y')dxdy, 2)
Ak

where g(x, y) is the point spread function, A, is the projec-
tion of the pixel area on the sample plane defined as: A; =
{(%,9): %0 = x = X0, V11 = ¥ = Vrat» and the detection
efficiency is assumed to be 1.

For a moving molecule, the photon emission positions
x',y" and hence the p; values change with time. The as-
sumed linear motion of our imaging model can be included
into py, by substituting x' = xo + v,t, and y’ = y, + vt in
equation (2). This yields a time-varying p; written in terms
of the model parameters:

(1) =fA g(x—xg— v t,y —yo—v,t) dxdy. (3)
k
To arrive from p;(¢) at the pmf of the pixel values, we
define the photon arrival process to pixel k, denoted by
{qx(t),t = 0}. Having contributions from two Poisson
processes (emissions of the molecule and the background),
{qi(t)} is also a Poisson process. Its rate can be written as

Ai(t) = Agpilt) + Ay, (4)

where the first term on the right side is the contribution
from the molecule, given by the product of the photon
generation rate and the landing probability. The second
term is the contribution from the constant and homo-
geneous background, for which, by definition, the arrival
probability is the same for all times and pixels. We note
from equation (4) that {g.(#)} has a time-varying rate and is
therefore a nonhomogeneous Poisson process. The non-
homogeneity comes from the motion of the molecule.

The pmf of q,(t), denoted by p,, () (m), gives the prob-
ability of having m photons arrived at pixel k until time ¢
and can be written as

A(t)™
m!

Py (m) = e M, (5)
where Ay(t) = [y A (7)dr = Aofy pi(7) dr + Apgt. Tt is
worth emphasizing that the probability functions p,(t) and
therefore the pmf functions p, ,(m) are functions of the
unknown model parameters, Xo, Yo, Vs, Uys Ao Apg.

Assuming that each pixel detects photons indepen-
dently from other pixels, the joint pmf of the pixel photon
counts at the end of the exposure time T can be written as
the product of the marginals:

p‘h(T))‘b(T) ----- QN(T)(ml""’mN;@)

A(T)™MAL(T)". A (T)™ 12 A(T)
= e k1 5

1) ! ©)
mylmy ! omy!

where @ is the parameter vector defined as ® = [x, y,
Ux Uy Ag Ayl T, with subscript T denoting the transpose.

Equation (6) is the pmf needed for the maximum
likelihood algorithm. It gives the probability of obtaining a
particular image m = [m; m, ... my]”, for fixed T and @.
However, it can also be read as the likelihood function by
considering m as the independent variable and @ as the
dependent variable.

The log-likelihood function, L, is then just the natural
logarithm of equation (6), given by

L(®) = kg m; log(A(®))

- ; log(m,!) — ; A (O). (7)

Equation (7) is the final result of the derivations in this
section. Its first- and second-order derviatives with respect
to ® (Supplementary Article) are used both in the resolu-
tion limit computation and the iterative maximum likeli-
hood algorithm.

Supplementary Article

A Supplementary Article, entitled “Video-Based Tracking
of Single Molecules Exhibiting Directed In-Frame
Motion,” can be found online. Please visit journals.
cambridge.org/jid_MAM.

The log-likelihood function is maximized by Newton-
Raphson method, for which the updates can be written as

Ot =@ —g =10, (8)

where ®) is the estimate of the model parameter vector at
iteration , g'*) is the update vector at iteration t, whose k’th
entry can be written as

<8ZL(®) )1 <8L(®)> o)
& 902 00, )’
and Q is the number of iterations.

As a final remark to this subsection, we note that it is
not possible to determine the actual sign of the velocity
vector from single-frame data only, i.e., there is an inherent
sign ambiguity. The algorithm yields the estimates of the
initial position and the velocity vector, from which one can
calculate the estimate of the final position. An alternative
result with these initial and final position estimates inter-
changed and the sign of the velocity components reversed
fits the data equally well. Deciding on the correct alternative
requires additional information from neighboring frames.
This is done during the high-level analysis.

Fisher Information Matrix and Resolution Limits

The Fisher information matrix (FIM) is an analytical tool,
widely used in parameter estimation problems. It has the
utility that its inverse defines a lower bound for the error
covariance of all possible (unbiased) estimators. This bound,



known as the Cramer Rao lower bound (CRLB), is therefore
an important indicator for the resolution limits of our
imaging model. Its square root gives us the best achievable
precision, with which we can estimate the model param-
eters from the image of a molecule in an unbiased way.
The FIM, J, for the parameter vector ® is defined as

[azL(@))] (10)
09,00, |’

[J(®)]; = —E

where E[ ] denotes expectation, and L is the log-likelihood
function. Substituting L from equation (7) gives

< 9*A ()
{25 )7
M dA (@) aAk(®)>i|. (11)
A (©@) 00, 09,

(e); =

Using the independence of the pixel values, and recognizing
that E(m;) = A.(®), we obtain the ij entry of J(®) to be

N1

IAL(®) IA,(®)
e = § A(®) 00, 90,

]

, (12)

and write /(@) in a more suitable form as

N1 9A(®) 9A(@)T

J(®)= ,;1 A(®) 00 00 (13)

The derivatives in the FIM are evaluated at the true
values of the parameter vector, meaning that the CRLB
resolution limits we obtain are going to be different for
different parameter values. The general expressions for the
derivatives are provided in the Supplementary Article. For
the special case of a stationary molecule (i.e., v, = v, = 0),
we get

0A(O) _ | s

0x, 0%,
IAL(®) )
R AO ﬁ T,

9o Yo
JIAL(®) ape T?

v, - ox, 2 ’
IAL(®) ape T?

v, Cay, 2
9A,(®)

7 T,

o, Pr

and
IA (@)
AN T

g
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Based on these derivatives, we see that for all k,

[ 1/2 7] 0
0 T/2
A(®)T ]| —1 IN(@)T 0
T 0 =0 and T 1 =0.
0
B _ | 0

(14)

Consequently, the Fisher information matrix given by equa-
tion (13) is rank deficient, with rank 4, for the generic
stationary molecule scenario. The rank deficiency implies
inherent ambiguity in resolving parameters corresponding
to directions within the null space of the FIM.

On the other hand, the FIM is nonsingular in the
directions orthogonal to the span of the null space vectors
given in equation (14). For example, the FIM is nonsingular
in the directions

1 0
0 1
T/2 0
0 and 2 | (15)
0
n - | 0

corresponding to midframe x- and y-positions [i.e., x, =
xo + v(T/2), and y, = y, + v,(T/2)], which means that
there is no ambiguity in estimating these parameters.

The problem of singularity of the FIM for the station-
ary molecule case is transformed to the problem of ill-
conditionedness in the relatively slow (near stationary)
motions. This manifests itself as high estimation errors in
the linear combination of model parameters nearly in the
directions defined by the span of the vectors in equation
(14). However, the analyses in the Results and Discussion
section show that the eigenvalues of the FIM correspond-
ing to the midframe positions are located at the high end
of the eigenspread with the large disparity. This observation
implies that, at almost all speeds, the midframe position
vector [xy + v.(T/2) yo + v,(T/2)]" can almost always be
estimated accurately, despite the potential inaccuracies in
the individual position and velocity parameters. This argu-
ment is, of course, only valid when the in-frame motion
length is less than the window size. The accuracy of the
midframe location is exploited by the interframe Kalman
filter based estimation/tracking algorithm described in the
next subsection.

Kalman Filtering

The Kalman filter is a recursive data processing algorithm
used in estimating the state of a linear dynamic system from
noisy measurements. In our context, the system corre-
sponds to the moving molecule, measurements correspond
to the in-frame estimations, and state is a set of parameters
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that describe molecule’s motion. We describe our Kalman
filtering equations, following the same notation as Kailath
et al. (2000): Lower-case characters are used to show vectors
and written in a bold font for random variables. Matrices
are denoted by upper-case italic characters. The subscript k
indicates the discrete time steps, corresponding to frame
numbers.
The state-space model is given by

X = Fo X Ty
Ye = Hx + vy, (16)

where x is the state vector, F is the transition matrix, n is the
process noise, y is the measurement vector, H is the obser-
vation matrix, and v is the measurement error.

We define the state vector to be

X = . (17)

The transition matrix, under the constant uniform motion
assumption of the imaging model, is given by

10 (T+T) 0
0 1 0 (T+T)
F= ) (18)
00 1 0
00 0 1

where T, is the read-out time. We have a fully observable
system, so H is the identity matrix.

The process noise n and the measurement error v are
assumed to be normally distributed around 0 mean with
covariance matrices Q and R, respectively. Q and R are
diagonal matrices, with their elements given by the typical
variations in the actual and measured values respectively of
the parameters in x. We assume these variations to remain
constant throughout the motion.

In the following, we provide the operations carried at a
frame k. Due to the recursive nature of the Kalman filtering,
these operations involve predictions from (to) the previous
(next) frame, denoted by subscript k|k — 1 (k + 1|k), and
related to their current estimates, denoted by subscript k| k,
through measurement (time) update equations. The opera-
tions start with the measurement to obtain y;. Then the
measurement innovation vector, e;, and its covariance ma-
trix, Ry, and subsequently the Kalman gain matrix, Ky,
are calculated according to

e = Vi — HX oo (19)
R.r=HP;— H" +R, (20)
Ky = Py H'R_ ;. (21)

Next, the state vector estimate X and the error covari-
ance matrix P are updated by the measurement-update
equations:

ik = Xepeo1 T Ky g (22)
Py = Prjj—1 — K Re o Kfy- (23)

And finally the time-update equations predict their
values for the next frame:

X1k = BeXyppo (24)
Pk+1\k:FkPk\kaT+Q' (25)

Since Xy (x—1 and Py—; will not be present for k = 1,
they must be initialized with typical values before the algo-
rithm starts.

As mentioned earlier in the Maximum Likelihood Ap-
proach for In-Frame Parameter Estimation section, single
frame data alone are not sufficient to determine the correct
sign of the velocity vector. Therefore while updating our
Kalman filter, we also have to check for the sign of the
velocity vector. We do this by calculating Kalman updates of
both alternatives, and comparing the Frobenius norms of
the resulting windows in the next frame. If the norms are
different by more than 1.5 times (a user-defined arbitrary
factor), we conclude that the one with lower norm misses
the molecule and therefore is the wrong choice. If the
difference does not reach this threshold (i.e., the molecule
still remains within the window even with wrong choice of
sign, as can happen for slow motions or large windows),
then we run the in-frame estimation in the next frame for
both window positions and choose the alternative that
yields better agreement between the time updated position
and the estimation result.

REsuLTs AND DiscussioN

In this section we evaluate the performance of our tracking
algorithm at the low and high levels described in the Algo-
rithm section. In testing the low-level analysis (in-frame
estimation), we first use CRLB calculations to find the
smallest achievable error in estimating parameters of the
proposed imaging model under typical experimental condi-
tions. We then apply our estimation algorithm to simulated
images of a moving molecule and compare its success with
the theoretical outcomes of the CRLB calculations. For
testing the high-level analysis (tracking), we use actual ex-
perimental data recorded as described in the Materials and
Methods section. We compare the molecule trajectories
obtained from analysis of the movies with the ones ob-
tained from the piezo-stage sensor.

Low-Level Analysis

Starting with the in-frame estimation, we first consider the
case where the molecule is moving with a uniform transla-
tional motion along the positive x-direction (v, # 0, v, = 0).
The molecule speed is taken to be 3.11 wm/s and corre-
sponds to 7 pixel/frame for T = 0.2 s. A window size of
15 X 15 pixels is used, and A, and A, are taken to be 15,000
and 300 photons/s, representing the typical values we ob-
tained in our experiments.
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Figure 2. Performance of the proposed estimation algorithm as a
function of T for parameters v, (green triangles), x, (blue squares),
and x, (red circles). Tracking performance is evaluated on the basis
of (A) CRLB limits, (B,C) bias and standard deviation of estimates
from simulated images. For comparison, corresponding character-
istics of x,, obtained from same set of simulated images are also
shown (black diamonds). For all presented data, v, is kept fixed at
3.11 um/s (7 pixel/frame at T = 0.2 s).

Figure 2A shows the CRLB limits for parameters x,, v,
and x. as a function of T, calculated from the FIM [equation
(13)]. Except for the extreme T values, the CRLB limits
increase only slightly with the increasing exposure time. The
divergence on the long T end is merely a finite window size
effect: As the exposure time is increased, a molecule with a
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certain speed travels more pixels per frame, and its smeared
image eventually extends out of the estimation window. The
rise in the CRLB of x, and v,, at short exposure times is a
result of the ill-conditioned problem of the FIM, discussed
in the Algorithm section. In the short T limit, the image of
the molecule becomes less smeared, or equivalently less
dependent on v,. This causes a redundancy in parametriza-
tion that appears as a correlation between x, and v, and
renders their individual estimations subject to high uncer-
tainties. On the other hand, x, intrinsically achieves better
precision by merging the two correlated parameters (x, =
xo + v, T/2).

Figures 2B and 2C show the same type of analysis using
simulated data. All the parameters of moving molecules in
the simulations were set to the same values as for Figure 2A,
and a set of 50 images was generated for each T to assess the
accuracy and precision of the position and velocity estima-
tions. For the parameter estimation, the window center was
placed at (x,,y.) position, and the maximum likelihood
algorithm was run for 400 iterations. Due to the uncertainty
in determining direction of motion mentioned in the Mate-
rials and Methods section, the estimated v, sometimes had
the reverse sign with respect to the true molecule velocity
used in the simulation. For such cases we changed the sign
of the estimated velocity vector and replaced the initial
position with the final one. To compare the performance of
our SMT algorithm to standard tracking schemes that do
not take in-frame motion of the molecule into account,
simulated images of moving molecules were also processed
with a modified version of the algorithm that assumed a
stationary molecule and, thus, only provided estimates of
the mean in-frame position of the molecule x,,,.

In Figure 2B, the mean of the estimates from the 50
generated images is compared with the actual values used in
the simulation, and their difference, the bias, is interpreted
as the accuracy of the estimations. We see that the accuracy
of x. is notable, with <0.05 pixel (<4.4 nm) bias for all T <
0.5 s, whereas estimations of both x, and v, are biased. If
the stationary molecule algorithm is applied, estimates of
the molecule mean position x,, become biased at moderate
values of T > 0.25 s, where smearing of the molecule image
due to its motion becomes significant. The observed bias of
the estimates oscillates between positive and negative values
due to the combination of increasing distortion and decreas-
ing signal-to-noise ratio (SNR) of smeared images (Chee-
zum et al., 2001).

Similarly, Figure 2C compares the standard deviation of
X0, Uy and x, estimates (interpreted as the precision) with
the CRLB limits of Figure 2A and shows that the two are
very close for T values from 0.1 to 0.4 s. The window effect
on the long T side is almost identical to that of Figure 2A,
whereas the diverging behavior of the uncertainty in v, and
Xo estimations on the short T side disappears to a large
extent. This is attributed to the presence of bias in estima-
tions of these parameters from the simulated data (see
Figure 2B), as opposed to the unbiased estimator assump-
tion of the CRLB analysis. Further discussion on the discrep-
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ancy at the short T end is going to be provided following
the next figure, where a more direct connection can be
made with the Algorithm section. Estimation of x, performs
the best also in terms of precision, with <0.08 pixel
(<7.1 nm) standard deviation for all T = 0.4 s. Again,
precision of estimates of x,, that assume a stationary mol-
ecule decreases significantly for T > 0.25 s, where it be-
comes worse than both the x, and x, precisions.

All of these observations are in agreement with the
relatively abstract interpretations of the FIM. Analysis of
both CRLB predictions and numerical simulation results
brings us to the conclusion that it is more advantageous to
describe position with the midframe values (x., y.) instead
of initial ones (xg,y,), and rely more on the position
estimation, than on the velocity estimation. In fact, the
whole parametrization in this study could have been done
in the form

o=l
- + (t—1T/2) t€[0,T];  (26)
}’(t) Ve vy

however, we decided to keep our initial-point-based param-
etrization to attract more attention to this interesting result.
The comparison of x, with x,, clearly shows that the im-
plicit assumption of molecule motion during image acqui-
sition improves the accuracy and precision of the molecule
localization. As expected, this tendency becomes more pro-
nounced for higher integration times T, where the image
distortion due to molecule motion increases.

As the next conclusion from Figure 2, we note that both
accuracy and precision of estimation only slightly depend
on T. This suggests that in a real experiment, the choice of a
suitable T must be based on other criteria rather than the
performance of the estimation algorithm. Working with a
short exposure time would be beneficial for several reasons:
First and most importantly, this would reinforce validity of
the uniform in-frame motion assumption of our imaging
model. Second, the Kalman filter would be updated more
frequently. Third, the resulting trajectory would have a
higher time resolution. It is true that the in-frame velocity
estimation becomes worse for short T. However, our main
goal here is to determine the position of the molecule as a
function of time, and the in-frame velocity is just an auxil-
iary parameter that helps in achieving better resolution in
position (see Fig. 2), and predicting where to place the
estimation window in the next frame. If the molecule veloc-
ity on the time scale of T is needed, it can be determined
more precisely from the difference of midframe positions of
consecutive images in the recorded stack.

Based on these conclusions, we carry out a similar
analysis for a range of velocities and fixed T. This represents
the condition in a real experiment. Figure 3A shows the
CRLB limits in x. and v, estimations as a function of v,
values from 0.5 to 15 pixel/frame for T = 50 ms (v, = 0.89
to 26.67 um/s), and a window of 15 X 15 pixels. A, and A,
are again taken to be 15,000 and 300 photons/s. The maxi-
mum error within the studied velocity range turns out to be
<1.5 pixel/frame (<2.67 um/s) for v,, and <0.5 pixel

Square root of CRLB
{pixel or pixel/frame)

\.i'>< (pixelfframe)

Bias
(pixel or pixel/frame)

o 5 10 15
Vx (pixel/frame)

25

Standard deviation
{pixel or pixel/frame)

VX (pixel/frame)

Figure 3. Performance of the proposed estimation algorithm as a
function of v, for parameters v, (green triangles), and x, (red
circles), based on their (A) CRLB limits, (B,C) bias and standard
deviation of estimates from simulated images. For comparison,
corresponding characteristics of x,, obtained from same set of
simulated images are also shown (black diamonds). T is kept fixed
at 50 ms for all presented data.

(<44.4 nm) for x.. The estimation algorithm performs
fairly well for both parameters, except for an increase in the
bias in v, estimation for v, = 3 pixel/frame, and the finite
window effect in Figure 3C. For x. estimation, the bias is
<0.1 pixel (8.9 nm) for all v, whereas the precision is better
than 0.2 pixel (17.8 nm) up to v, = 12 pixel/frame. The
negligible bias and the standard deviation comparable to



the CRLB limit indicate that, for T'= 50 ms and typical A,
and A, values, the midframe position (x,, y.) can be esti-
mated as accurately and precisely as its theoretical limit for
a wide range of molecule velocities. Similar to Figure 2,
accuracy and precision of the estimates of x,, drop signifi-
cantly with increasing v,, underlining again the benefits of
the newly proposed tracking algorithm over the traditional
stationary-molecule schemes.

The growing behavior in the CRLB bound for the v,
parameter (see Fig. 3A) as velocity decreases (in v, < 3
pixels/frame region) can be explained by the increasing
condition number of the Fisher information matrix. As
previously noted in the Algorithm section, FIM is singular
for v, = 0 and it is close to singular for low velocity values.
The corresponding high values of CRLB implies that being
unbiased is a too stringent condition to pose on the estima-
tor for low velocities (Usman et al., 1993; Eldar, 2008). In
fact, as shown in Figure 3B, the estimation algorithm auto-
matically imposes a bias in this region to reduce standard
deviation, which is shown in Figure 3C. For the practical
purposes what matters is the actual mean square error
between the true parameter and the estimated value, which
can be written as

E[(v, — 0,)?] = bias(d,)?* + variance(d, ). (27)

Based on Figures 3B and 3C, we can deduce that the
variance-bias trade-off implied by equation (27) is adjusted
by the estimation algorithm to avoid the potential high
variance values for an unbiased estimator (reflected by the
CRLB curve) at low velocities.

High-Level Analysis

So far, the discussions have focused on the performance of
the in-frame (low-level) analysis of our tracking algorithm.
Using these results, we now continue with the piezo-stage
experiments, where the high-level Kalman filtering part is
also used.

In these experiments, we compare the measured (y;)
and filtered (X,) position and velocity data of a molecule
with their actual values (x;) obtained from the position
sensor readings. We calculate the actual velocity from posi-
tion sensor data at a 200 times lower rate (50 Hz), to discard
the high-frequency noise in the position data. The in-frame
estimations were done with 400 iterations for the first
frame, and with 100 iterations afterward, where the starting
values in a frame were taken as the results of the previous
one (Kalman time updates for x, y,vy,v,; and in-frame
estimates for Aq, Aj,). The operation of Kalman filtering is
related to the covariance matrices Q and R. In forming Q,
we consider the expected deviations from the uniform mo-
tion assumption and use approximate values reflecting such
deviations. Working with higher process noise variance
values tolerates more deviations from the assumed model,
but it also results in less accurate estimates. In a real
experiment, we can only enter approximate values for the
process noise variance, but as shown in Wu et al. (2010), the
result will not change much, unless an order of magnitude
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Figure 4. A representative result from the piezo-stage experi-

ments, showing (A) the overall linear trajectory, (B) the measure-

ment error, and (C) v, data for the actual (red line), measured
(green pluses), and Kalman-filtered (blue circles) values.

error is made. For the elements of R, we use the sum of
squares of the typical biases and standard deviations in
position and velocity estimation suggested by Figure 3 [0.22 +
0% = 0.04 pixel®> = 316 nm? for position, and 0.2% + 0.4% =
0.2 (pixel/frame)? = 0.63 (um/s)? for velocity].

Figure 4A shows the case for a linear motion along the
x-axis. The movie was recorded with T = 50 ms and
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analyzed using a window of 15 X 15 pixels. Owing to the
perfect agreement between the assumed and actual mo-
tions, we used a small process noise variance of 1 nm? for
position and (1 nm/0.05 s)? for velocity. In comparing
position data, a constant (but unknown) offset (D,,D,)
between the position of the analyzed molecule and the
origin of the stage position sensor readings had to be
eliminated to bring the two to the same origin. This was
done by taking the average over k of the differences between
the filtered and actual positions (i.e., D, = (Xg[1] —
X[ 1k, and D, = (X [2] — x¢[2])¢), and subtracting it
from the filtered/measured positions. After this necessary
shift, we see that both the measured and filtered trajectories
agree well with the actual one.

Figure 4B plots the position error against time (or
frame numbers) for the measured and filtered trajectories.
The position error is defined as VAx? 4+ Ay?, where A
denotes the difference of the measured/filtered values from
the actual values at the midframe times. We see that both
measured and filtered data reveal the actual motion within
average errors of 0.17 pixel (15.54 nm) and 0.11 pixel
(9.65 nm), respectively. Considering the difficulty in com-
paring the values from image analysis with the ones from
the real system, this error likely involves other contributions
from the shifting procedure, or from slight misalignments
or astigmatism within the imaging setup. The level of accu-
racy obtained here is therefore quite satisfactory for a real
experiment. We further see that the errors in measured and
filtered trajectories do not differ significantly. This is ex-
plained by the in-frame position estimations’ precision al-
ready being comparable to the fluctuations in the sensor
reading. Since the sensor reading itself has a standard devi-
ation of 0.03 pixel (2.6 nm) in the (stationary) y-axis (see
Fig. 4A), error in the filtered data cannot be smaller than
V2 X 0.03 = 0.04 pixel (3.6 nm).

The situation with the velocity measurement, however,
is different. In this case, our in-frame estimations have a
larger error than the real velocity fluctuations, and the effect
of Kalman filtering becomes clear. This is shown in Fig-
ure 4C, where the v, estimates of the same molecule are
plotted together with their filtered and actual counterparts.
We see that Kalman filtering settles quickly within first three
frames and corrects the noisy estimations. A similar trend
would be observed in filtered position estimations also,
when working with images of a worse SNR.

In addition to the linear motion case presented above,
we also wanted to test our algorithm for a more general
type of motion. Figure 5 summarizes the results of tracking
a molecule moving along a sinusoidal trajectory of y =
2sin((277/2 pum)x) with the period of 1 s. As in the case of
linear motion, the movie was recorded with T = 50 ms,
analyzed using a window of 15 X 15 pixels, and the offset
between the measured and actual position origin was cor-
rected. A higher process noise variance [100 nm? for posi-
tion, and 4 (um/s)? for velocity] was used to compensate
the difference between the actual and assumed motions.
This resulted in less effective filtering as compared to the
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Figure 5. Result from the piezo-stage experiments with acceler-
ated motion, showing (A) the overall sinusoidal trajectory, (B) the
measurement error, and (C) v, data for the actual (red line),
measured (green pluses), and Kalman-filtered (blue circles) values.
The two images in image D correspond to representative maximum-
velocity (left) and maximum-acceleration (right) instants occur-
ring at 19th and 25th frames, respectively.



linear motion experiment. In fact, the Kalman filtering was
almost completely turned off, as evidenced by the coincid-
ing filtered and measured values (see Fig. 5A for position
and Fig. 5C for velocity). In other words, the whole tracking
algorithm worked based on the raw in-frame estimations.
Despite the absence of corrections from Kalman filtering,
we see in Figure 5B that the error in position estimation still
remains smaller than 1 pixel (90 nm) and has an average
value of 0.42 pixel (37.43 nm). Although this error is higher
than the linear motion case, it must be considered together
with the level of velocity and acceleration present in this
motion. The maximum values of the (time-varying) veloc-
ity and acceleration along y-direction were 7 pixel/frame
(12.6 wm/s) and 2.2 pixel/frame? (79 wm/s?), respectively.
Two 15 X 15 pixel images from one of the maximum
velocity and maximum acceleration instants are provided in
Figure 5D to demonstrate the appreciable distortion. This
illustrates the potential advantage of our algorithm in ana-
lyzing fast molecules. Furthermore, the algorithm performs
sufficiently well even for accelerated motion that violates
the assumptions of the used imaging model.

CONCLUSIONS

In this work, we introduced a new model of image forma-
tion for mobile incoherent point sources of light (e.g., single
molecules) and developed an algorithm for retrieving the
position and velocity of such light sources from a recorded
stack of images. The core of the tracking algorithm is based
on in-frame estimation of parameters of a moving light
source that is further refined by Kalman filtering of the raw
estimates. We illustrated that the new imaging model pro-
vides a better precision and accuracy of position estimates
of a moving molecule, in comparison to the standard imag-
ing schemes assuming a stationary light source.

We were able to track molecules under uniform motion
with an average position error of 0.11 pixel (9.65 nm). We
also applied our algorithm to accelerated motion, a case
that does not match with the assumptions of our model,
and still obtained reasonable success. We achieved tracking
of molecules moving with a speed as fast as 7 pixels/frame
(12.6 wm/s), and acceleration as high as 2.2 pixel/frame?
(79 um/s*) within a mean error of 0.42 pixel (37.43 nm).
These results can be improved by including in-frame accel-
eration into the proposed algorithm.

The Kalman filtering demonstrated here can also be
improved by including A, and/or the in-frame acceleration
of the molecule to the state vector. This would further
expand the applicability of the algorithm to more complex
modes of motion. Similarly, updating the measurement
error variances adaptively, depending on A, or velocity, can
be an effective remedy for blinking molecules.

The main area of application of the presented tracking
procedure lies in studying directed molecular transport, for
example in living cells, fluid flows within microfluidic sys-
tems, or optical potential landscapes. In principle, stochastic
Brownian motion of a molecule can be accounted for either

Tracking Algorithm Based on In-Frame Motion 791

on the level of in-frame estimation by evaluating apparent
broadening of the observed point spread function (Schuster
et al., 2002), or in the Kalman filter by considering the
influence of the random position fluctuations of the mol-
ecule on the measured trajectory variance (Wu et al., 2010).
Even more general imaging models will become possible
with the advent of imaging detectors that can deliver arrival
times of individual photons. Although the presented imag-
ing model is two-dimensional, our approach can be readily
generalized to three dimensions with a suitable form of the
point spread function.
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